Ultimate
Replay 2.0

A simple and effective state-based replay system for Unity

Trivial Interactive
Version 2.1.x

Ultimate Replay 2.0 is a complete state-based replay system ideally suited to kill cams or action
replay applications. Due to the state-based nature of the system, itis possible to view replays from
any angle or even fly around the scene as playback occurs.

Recommended Uses:

e Action replaysin sports of similar games.

e Kill cams / Death cams in shootinggames (Demoincluded).

e Ghostvehiclesin racing games (Demoincluded).

e Multiple angle replays where the same recording is viewed from a number of different
vantage pointsin succession.

e Manymore uses...

Features

e Quick and easy setup/ integration into existing projects.

e Simple APIforreplay and playback control means that very little scripting knowledge is
required.

e Recordand replay as many different objects as you want simultaneously.

e Usesa state-based replay system meaning that you can view playback from different camera
angles or evenfly around as playback occurs.

e Full supportforinstantiation or destruction of objects during recording.

e Fully interpolated playback meansthat you can record at ultra-low frame rates (5fps and
less) and retain smooth and accurate replays.

e Supports playback at any speed from ultra-slow motion to 2 or 4x.

e Supportsreverse playback which can be usedto produce a rewind effect.

e Playback can be pausedandresumed at a later date.

e Full playbackseek support allows you to jumpto any pointin arecording.

1|Page

Trivial Interactive 2020

Full control overrecording frame rate to make sure you capture the best quality recording at
the smallest memory cost.

Recordingan objectis as simple as attaching a replay component.

Built-in support for recording transform, audio, particles, animation, and more.
Easily create your own componentrecorders to expand the capabilities.

Memory recording can be setup as continuous or as a rolling buffer configuration.
File support meansthat you can create persistent replays for later game sessions.
Highly optimized file format allows for lengthy replays with minimal file size and high
performance streaming.

ReplayVars allow script variables to be recorded simply by adding an attribute.
Getuseful hints about the storage space requirements forall replay objects.
Includes example GUI controls for playback manipulation.

Comprehensive.chm documentation of the APl for quick and easy reference.

Fully commented C# source code included.

2|Page

Trivial Interactive 2020

Contents

UL o =d Lo [CTU Lo [Pt 7
REPIAY IMIANAEEN. .. ettt e e e e e e n e e e a e e e aeeeneas 7
20T o] = 1YY= o LT 7
Y] Y Ay o =Y I - ¢ ={ <L £ TP 7
REPIAY BENAVIOUeiiiiiiiiiiiiiitiittete et e e e e e e e e e e e e e e e e e e es 8

(01110 Q) -1 P PP PPPPPPPPPPPRY 9

0T o] L 0o o o [T =Y o] T 13

REPDIAY CONCEPES - s s s e e e e e e e e e e e e e e e e e eaeaenes 14
Yo LYY T g T = Y o PNt 14
REPIAY HANAIE .ottt e e et e e e ettt e e e e et e e e e et e e e sataeeeeraaaaaees 14
REPIAY TAENTILY .ottt s e e e e e e e e e a e e e e e s 14
Y o] LY -1 IRt 14
0T o] LA a F=T o1 1o X Rt 15
REPIAY SCONE ..ttt e e e e e e e e e e e e e e e e e s 15
BT o) N A o =T R =T~ U UPPPPPPN 15
Replay Recorder COMPONENLciiiiiiiie et e ettt e et e e e et e e e e tte e e saaeeeeaaaeeseataneeeesannaaenes 15

RePIay @ Game ODJECE....cuue et e e e e e et e e e et e e e aaaas 16
(O 100l 0] o =Yoo 11=Y - ol o 1 VRS 16
IMIQIN AP Lttt e e e e e e e e e e e e as 18

BEEINRECOITING ..ceiiuiiiiiiii et e e ettt e e e et e e e e et e e e eata e eeeatanaesaraneeesasanaaaees 18
Y o] o1 (=Y ole] o 1o T~ A0 PSPPI 18
(] 2{=Tole] (o [T - PN 19
Y=L 1Y, oF- 1ol 11 o [T 19
SetPlaybackTiMeENOrMAliZEdeuuiiiiiiiiiiiiiiitiitte ettt eeeerree bbb bebbbababaaaeaees 20
YR 1Y, oF- [ol BT =Tt d (o o TS 20
SetPIlaybackTimMESCalE. e et e e et e e e et e e e et e e e aa s 21
(CT=1d 1Y o =1 4T T OO P PRSP 21
BeginPlaybackFrame.........cooiiiiiiii e e e e rat e aaa 21
STy oY e Y oF- [RPNt 22
Y ZeT o1 4 1 o - ol PP PP 23
Y 20T 0] = 1V =N 23
FiNo [0 | F YV oF: T g Yo | T (=Y o= RSNt 23

REPDIAY SEEEINES . . s s e e e e e e e e e e e e e e e e e e eaeaenas 24

(02T o] 1Yol o LT 28

3|Page

Trivial Interactive 2020

REPIAY SCONE IMOUE.euii e ettt e e e e e e e et eeeeeeeeseataaaeeeaeeesasnanaeeaeeeennes 28

2 OY o) A A o (T o -1 =Y TR UPPPPPPRN 28
CUSEOM REPIAY PrEParer . ccvee et e e e et e e e e e e e e e et e e e s et e e e eaaans 29
20T o] LA (=] =] o U TRR 31
Registering Replay Prefabsooviiiiiie et e e e e e e e et aaaes 31
Y= d Y (] ARV TR ol] o) N 32
Instantiating Replay Prefabs 33
USING REPIAY SCONE..... ittt e e e e e e et e e e e e e e e e et e e e aeeeeessssanaaaaaeeenenes 33
USING REPIAY IMANAEET ...eun et e et e e et e e e e e e e e tte e e eetbeeeeeabaeeeesnnaaaees 33
Destroying Replay Prefabs.......... ittt e eaa 34
0T o] N A o =T R =T =L SRR 37
Yo LAY (T a o T AV - T (= SNt 37
Yo Y Ay 1 (= 1 4 T T4 == SRt 38
REPIAY FIlE TArZE T .eveeeiiiiiiiiiiiiiiiitiitit ettt e e e e e e e e e e e e e neees 38
Custom Replay StOrage TarZet.....cuuu i it e et e et e e e e e e eeaans 39
[20=Y o] = 1Y 0] o T SRR 40
T B o =T o PP PTUSPPPTPPPRY 40

Fo =T o 41 VA N =T 0 1 =Y P TR UURRUPPPPPRPRPN 40
0T o] 1Y 2T o AV Lo T U SO RR 42
REPIAY IMESSAZES .evvvvvvviiiiiriiitttiitrtittetaiab it e e e e e e e e e e e e e e e e ns 42

(@ LY V=To] 1Y) - [P 42

(@ 1Y 3=To] 177 =1 Vo IR 42

(0] oYUl o1 Y o = 1Y o U 1 P 42

(@ 1Y aV=To] 1Y 2 U< = S 43

(@1 aY=To] 1Y =1] U] (T 43
(0101 2(=T o] = 1YL U T oo o1 PP PRSP 43

(@ T Y V=To] 1Y V7= o S 43

(O LY a=To] RV Ay o 1V T=Ye [E 43
REPIAY EVENES ..ttt e e e e e e e e e e e e e e s 44
20T o] AV AV, 1T d o T o E U PURPPPN 45
Y] LAV T o= | o] (=L Rt 46

2 0=Tolo] o [T @0 0 o Yo aT=T o | 3R 48
20T o] NV 1 = T2 1] (o] o o U PPRPN 48
Create IMIBNU....ouuiiiiiii ettt a s 48

[T of<Tot (o] RO O TP UPP P PPN 48
BT o) A g F= 1 o] T B =L TSR PPRPPRN 50
4|Page

Trivial Interactive 2020

(O <T= 1 (I 0. U= o L 50

LT oot {0] SO 50
Replay Component Enabled Stateooeeiiiiiiiii e e 50
(O (= 0 0 T= o U PP 50
LT oot {0] SO OO 50
0T o] LY Y 11 a g = (o] Nt 52
(O (= 0 0 T= o U TP 52
[T oot {0] SO OO PPN 52
0T o] LY e T a0l LI Y Y o o Nt 54
(O g= =) (= 0 0 T= o U PP 54
LT oot {0] SO O PO UP PPN 54
20T o] = 1V YU e Lo TRt 54
LO1 g) (= 0 0 T= o U PP 54

[B o =T ol {o] TP UPPPPTOPPRt 54
Replay Material Change i e e et e e et e e e e et e e e abaeeaees 56
(O g= =) (= 0 0 T= o U PP 56
[o =T ol {o I TS PUPP T UPPPPTRPPN 56
REPIAY MAEIIAl ...t e e et e e e et e e e et e e e et eeeataaaaaes 57
(O g= =) (= 0 0 T= o U PR 57
[o =Tl {o I PR PPPPTPPN 57
=Y o] LA R TS (=T g Lo [T T PNt 59
(O g= =) (= 0 0 T= o U PP PP 59
1] o =T o1 {o I PP PPPPTPPN 59
Replay Trail Renderer (Unity 2018.2 OF NEWET) ...cevviiiiiiieeeeeeeeeiiiiieeeeeeeeetttiieeeeeeeeeessraaaaeeeseeenes 60
(O g= =) (= 0 0 T= o U PP 60
[o =T ol {o I TP PPPPTRPPN 60
Custom Recorder COMPONENTSuuuiiiiiie e eeiiie e ettt e et e e e et e e e et e e e et e s et e eearaaeeeesneeeeeannnns 61
0T o] = 1A o] o} (o] U 63
RECOIT IMIOUE......eiiiiiiiiiiiiiiiitte ettt s e e e e e e e e e e e e aeeeneneaenes 63
(Y oF- 1ol Y/ [Yo [T PURPPPIN 64
Fre@ Cam MOde. ... e 65
(20T o] =1V =T o g o 11U 66
(20T o] AV AN 11 o - 1 4o o U UPPPPN 66
0T o] LY =T de (o] | PRt 66
(N 1o 13 0 E 67
20T o] A] =Y] o oL SRR 69
5|Page

Trivial Interactive 2020

STOrAGE STAtISTICS . oeuniii it ettt et e e et e e e e e aa e 69

Replay HUMaNOoid CONFIGUIAtOr.........ccviiiiiiie e e e e e e e e e e eearaaa s 71
L) A=Y= = i o o TP 73
[ToTo] oY= Y U] o]l] o SRRt 73
HOW DO L s e e s e e e e e s eaeeeeeaeaeaeeeeeeas 74
Getthe replay dUration? ... e e e et e e e e e e e et e e e s 74
Y=L o])Y o ¥ [[] 1 1 <1 SRR 74
REPIAY IN FEVEISE ...ttt e e e ettt e ettt e e e e e e e ettt e e e e e e e eaatb s eeeeesessstanasaeeeesesssnnnnaaaaeaeeeses 75
Replay in SIOW MOTIONT ...ccoee e e et e e et e e e et eeeeate e e s eataeesaaaeaaees 75
QUICKIY TEST MY SCENE ...t ittt ettt e e ettt e e e ettt e e e stteeeeata e e sattaeesasnnaessanaaeeannns 75
Create @ KillCAm? ..o e e e e e e e e e e aeeeeeens 75
(01 gF) (I =4 a1 1 V7= o | ol [76
6|Page

Trivial Interactive 2020

Upgrade Guide

If you are upgrading from the original Ultimate Replay asset, then we would like to thank youfor you
continued support and recommend thatyou take a look at the following section to see how the
asset has evolved. We have designed Ultimate Replay 2.0 from the ground up in orderto support
many requested features and also offera more optimized and capable asset. With that said, many of
the original concepts of Ultimate Replay still exist such as replay components, Replay objects etc. but
you may notice some changes.

Replay Manager

The ReplayManager was a core conceptin the original assetand indeed it still is the heart of the
assetalthoughin a slightly different form. Previously, the ReplayManager wasimplementedasa
MonoBehaviourcomponent whichneeded to be added to a scene objectin orderto work correctly.
In version 2.0, the ReplayManager is now a completely static APl and any required scene
components will be created as required automatically. Most of the original ReplayManager methods
still existin some form, although now they eitheraccept or returna ReplayHandle argument which is
used to supportan unlimited number of simultaneous replay operations. There is more information
later in the document but essentially begin operation such as BeginRecording and BeginPlayback will
returna ReplayHandle. You will need to store this objectand passit as an identifier every time you
wantto change the state of a replay operation or query state information.

In the original asset, the RelayManager also contained the global replay settings such as record FPS
and replay prefabs collection and more. This has now been moved into a global asset which is
accessible via the menu ‘Tools -> Ultimate Replay -> Settings’.

Replay Scene

A new conceptin Ultimate Replay 2.0 is the ReplayScene whichis used to specify a collection of
ReplayObject swhich should be associated with a record or replay operation. Inthe original asset,
all ReplayObject sin the active scene would be used in recording and playback which was fine since
it was only possible to have one replay operation running at any given time. In version 2.0, you will
now have the option of providinga ReplayScene instance to specify which ReplayObject syou want
to be affected. There are many static construction methods forthe ReplayScene class which makes
it easyto getall ReplayObject sin a specific scene oryou can manually add ReplayObject sif
required. If you do not provide a ReplayScene instance when calling BeginRecording or
BeginPlayback, thenall ReplayObject instancesin the active scene will be used. Take a look at the
Replay Scene section for more information.

Replay Storage Targets

The concept of replay storage targets still existin Ultimate Replay 2.0 however this time they are
implemented alittle different. Inthe original asset, storage targets were implemented as behaviours
and as a result they had to be attached to a game object, usually nexttothe ReplayManager
component. Inversion 2.0, the storage targets are now just normal C# objectsand can be created
using the constructor and static helper methodsin some cases. This does mean that some storage
targetssuch as the ReplayFileTarget will need to be manually disposed when nolongerneeded butit
allows for far greater control.

7|Page

Trivial Interactive 2020

Replay Behaviour

Anothernotable change is to the ReplayBehaviour component. Previously, this component was
used to create custom replay components as wellas record events and declare replay variables. In
version 2.0, the ReplayBehaviour still exists although some of its functionality has been refactored
out. The OnReplaySerialize and OnReplayDeserialize methods that you may already be accustomed
to nolongerbelongthe ReplayBehaviour class. Instead they have been moved outtoa new type
called ReplayRecordableBehaviour. The main reason for this change is so that users can inherit from
ReplayBehaviour without needingtoimplementthe serialize methods. Creatinga ReplayBehaviour
script can be usefulforqueryingthe record or replay state, recording variables, events, methods and
more as well as receiving various replay events like OnPlaybackStart.

8|Page
Trivial Interactive 2020

Quick Start

This section will walk you through the bare minimum setup requiredin orderto get a simple replay
systemup and runningas quick as possible. The walkthrough will assume a basic understanding of
core replay concepts such as the ReplayManager and RecorderComponents. If you are unfamiliar
with these terms then we highly recommend taking a look at the ReplayConcepts sectionasa
minimum to get a basic understanding.

Note: The completed demo scene which will be created by following the guide below is included in the

asset for convenience. You can find this scene at the path ‘Assets/Ultimate Replay
2.0/Demo/QuickStart.unity’

This guide will assume thatyou have successfullyimported the Ultimate Replay 2.0 assetinto your
Unity project and that you are starting with a blank scene ‘File -> New Scene’. If you have trouble
importing the assetfor any reason then please contact us for support. Contactinformation can be
found at the end of this document.

1. First of all, we will need a game object which will be recorded and replayed by the replay
system. This should be a moving object (staticobjects work fine but will make for a dull
replay) so this example will use a simple cube object with a physics rigid body and collider
attached.

First, we will add a cube object to the scene by going to ‘GameObject->3D Object -> Cube’
and position the objectat (0, 5, 0) in the scene. We will also set the rotation of the cube to
(50, 60, 0). The purpose of this is that the cube will tumble and roll when colliding with the
ground plane makingfor a more interestingreplay.

‘= Hierarchy | & .= | ©Inspector | 34 Navigation &=
Create ™ ar All —
| Cube || Static
R EE = v'T [Untagged +] Layer [Default 4
T e ag | Untagge +| Layer | Defau 3
Directional Light ¥ .+ Transform [
Position x/0 5
Rotation x/0 Yo
Scale x/1 1
¥ .| Cube (Mesh Filter) @ 5 %
Mesh il Cube (o]
¥ . ¥Mesh Renderer @ 5 %
» Lighting
F Materials
Dynamic Occluded 4
¥ i ¥ Box Collider @ = %
Edit Collider
Is Trigger O
Material None (Physic Material) -]
Center X0 Y0 Z0
Size x1 Y|l
Default-Material @ =
Shader | Standard v

With the cube object still selected, add a RigidBody component by going to ‘Add Component
-> Physics -> Rigidbody’. This will allow the cube to fall with gravity so that we have a moving
objectto record.

2. Thenextstepis to make the objectreplayable by adding a recorder component. Ultimate
Replay 2.0 offersa number of built-in recorder components which can be used to replay
different elements of an object. For this example, we will be interested in using the

9|Page

Trivial Interactive 2020

ReplayTransform componentwhichis usedto record and replay the Unity transform
component.

Add a ReplayTransform componenttothe cube object by going to ‘Tools -> Ultimate Replay
-> Make Selection Replayable -> Replay Transform’. This will cause a ReplayTransform and
ReplayObject componentto be attachedto our cube object:

» % Rigidbody -
¥ = ¥ Replay Transform (Script) o R
Script |- ReplayTransfarm o

Replay Identity [1155:{

Replay Object [54542 (Cube)

Replay Position HWYZ (o Local[| Lerplv LP[]

Replay Rotation HYZ [Local[| Lerp LP[]

Replay Scale xO vz Lerp[] LP[]

l @ This replay component generates '30' Bytes per sample on average l
¥ = ¥ Replay Object (Script) =N

Script | ReplayObject _| @

Replay Identity |54542

Prefab Identity [29572

b Replay Components (1)

l (1) This replay abject generates '43' Bytes per sample an average l

3. Once we have setup the cube object, we will now add a ground plane to the scene so that
the cube has somethingto collide with. Goto ‘GameObject -> 3D Object -> Plane’ to create a
ground plane. Make sure the plane position is setto (0, 0, 0).

4. Thatis all the setup done. We could now start recording using the Ultimate Replay APland
we would capture a valid replay of the cube falling and tumbling as it contacts the ground
plane. There is howeveran easier way to test the scene without the need forscripting. The
ReplayControls allow you torecord and view replays using a basic Ulinterface. We will
make use the ReplayControls componentin this example as it is the easiest way to testa
scene.

Add a ReplayControls component by goingto ‘Tools -> Ultimate Replay -> ReplayControls’.
This will add a new game objectto the scene named ‘ReplayControls’ which has a
ReplayControls script componentattached toit. This script component will display the
replay Ul using the Unity legacy immediate mode GUI.

5. We can now testour replay scene by entering play mode in the editor to start the game. The

ReplayControls will start recording automatically as soon as the game starts and the cube

10|Page
Trivial Interactive 2020

will fall to the ground and tumble. Once the cube has settled, click the ‘Play’ button of the
ReplayControls Ulin the top left cornerto enter playback mode. You will see that the replay
begins and the cubes actions are replayed smoothly and accurately. You can also use the
playback slider to jump to different positionsinthe replay as well as the settings menu
which contains options for playback speed and direction.

Free Cam Enabled

Note: While in playback mode, you can use the free-cam controls of WASD + RMB to fly the camera
around the scene as the replay is running.

Congratulations! You have successfully setup your first replay system using Ultimate Replay 2.0 and
can now move onto bigger and betterthings. At this stage it may be worth taking a look at the
following sections to get a better understanding of the assetand how it works:

Replay Considerations — There are a few things to considerwhen using Ultimate Replay 2.0
in your game. This section will highlight things that you should be aware of.
Replay Concepts—Learn aboutthe key concepts used by Ultimate Replay 2.0

Replaya Game Object—Learn how torecord and replay a game objectin depth.

Replay Manager— Learn more about the heart of the replay system.

Replay Prefabs—Needtoinstantiate or destroy objectsin your game? This section will tell
you how it can be achieved.

Replay Recorder Components —Take a look in detail at the built-in recorder components
offered by Ultimate Replay 2.0. Also learn how you could create yourown recorder
components.

There are also a numberof demo scenesincluded with the asset which may be worth taking a look
at. All demoscenes are located inside the demo folder at ‘Assets/Ultimate Replay 2.0/Demo’:

CubeTest—A basic demoscene that spawns a large amount of physics cubes overa period
of afew seconds. A usefuldemo if you want to instantiate or destroy recorded game
objects.

ReplayGhostVehicle — This demo shows how a ghost vehicle in a racing game could be
implemented. This demo uses more advanced techniques like multiple simultaneous record
and replay operations, replay identity transfer and multi storage management.

11| Page
Trivial Interactive 2020

e ReplayKillcam — Demonstrates how afirst person killcam could be implementedina
multiplayer game. This demo features ragdoll, particle, audio recording and more. It also
demonstrates how areplay can be viewed from the other players persp ective (as the

shooter) fora true killcam point of view.

Take a look at the How do i? section which will answer common questions about the asset. Can’t
find the answertoa question? Feelfree to contact usand we could add your questions along with
the answerto the documentation forall to benefit (Contact details at the end of this document).

12| Page
Trivial Interactive 2020

Replay Considerations

Ultimate Replay 2.0 uses a state-based storage techniqueto record game data at fixed intervals as
specified by the user. These data samples are known as snapshots and can accurately describe the
state of a scene at a given time offset known as the time stamp. Ultimate Replay 2.0 usesthese
snapshotstorecreate the scene during playback using a slideshow effect to show these states
quickly in order to give the illusion of seamless animation. There are a few things to consider when
implementing Ultimate Replay 2.0 into your game project:

Replays are state-based: Ultimate Replay 2.0 uses a state-based approach to record and
replay the scene. This means that a number of snapshots will be captured persecond during
recording which contain enough state data to be able to recreate the scene at a later time.
As aresult, there are a few things to consider:

o Replaysare created by restoring these snapshotsin quick successionin orderto
create a smooth playback sequence from a series of snapshots.

o Itis not possible to store recordings as popular video formats such as MP4 because
the screen pixeldata is simply not captured.

o Replaysare renderedin realtime by the active camera allowing you to switch
cameras during playback, add or remove post processing effects during, create a
highlight reel with multiple camera angles and more.

Scripts don’t run during playback: In orderfor the replay system to accurately recreate the
scene as it was recorded, scripts may be disabled so that they cannot move orotherwise
manipulate objects during playback which would cause inaccurate results. Only scripts
attachedto a replay object will be disabled so this will not affect standalone game systems
such as game managers which are not repayable. Scripts will be enabled and disabled
automatically by the replay systemviathe active replay preparer. Note thatyou can also
disable or modify this behaviour if required by creating a custom replay preparer script. See
the Replay Preparers section for more information. Note that scripts deriving from
ReplayBehaviour are treated specially and will be allowed to run during playback.

Physics components are inactive during playback: Physics components will also be disabled
during playback mode to preventinaccurate replays. The reason for this is that much like
scripts, physics components can cause objects to be moved during playback as a result of
rigid body updates or collision resolution. This would cause playback to become inaccurate
so the components are disabled or deactivated using the active replay preparer.

Storage targets cannot be used in multiple operations simultaneously: If you attemptto
start more than one record or replay operation using the same storage target, you will
receive an exception as this behaviouris not supported. By design, storage targets can only
be in write or read mode at any given time. Eventhen, only a single replay operation can
access the target to avoid many seek operations which could cause potential performance
issues, or worse, multiple write operations which could corrupt the data stream.

13|Page

Trivial Interactive 2020

Replay Concepts

This section will cover some of the essential concepts used by Ultimate Replay 2.0 and how they are
used to affectrecording and replay behaviour.

Ultimate Replay 2.0 is a state-based replay system meaning that the scene is sampled multiple times
during recording to create a series of snapshots. These snapshots contain the necessary state data of
all ReplayObject s in the scene such as position and rotation which are used during playback to
reconstruct the scene exactly how it was during recording. By reconstructing these snapshotsin
ordervery quickly, it is possible to create the illusion of a seamless replay, a bit like a flipbook
animation. This state-based approach has a few benefits overtraditional screen recording
techniques:

1. Thereplay can be viewed from different angles or cameras since the replays are actually
rendered as they are running. You can also move the camera during playback and apply new
post processing effects to change the appearance of a replay if required.

2. Thestate datarecorded perscene sample is actually a very small amount of data when
compared with screen recording techniques where the screen pixels need to be stored. This
means that memory usage and replay file sizes can be very small allowing for long and
complex replaysto be recorded, especially with the compression techniques offered by
Ultimate Replay 2.0.

Replay Manager

The replay manageris the heart of the replay system and is main interface used to interact with
Ultimate Replay in your game. It contains all the methods to start, stop, modify and query replay
operations and will generally be the only point of contact of the Ultimate Replay 2.0 APl unlessyou
are an advanced user. Take a look at the Replay Manager section for more detail.

Replay Handle

A ReplayHandle is returned by any begin operations such as BeginRecording or BeginPlayback and is

used to uniquely identify a replay operation. You will need to pass a replay handle instance any time

you needto query or change the state of a replay operation via the ReplayManager . Replay Handles
were added to allow an unlimited number of simultaneous replay operations to be supported.

Replay Identity

A Replayldentity is a unique serialized id value that all replay components are assigned by the replay
systemwhen created. The Replayldentity is used to identify each replay object, component, data
segment etcsothat the recorded datais restored tothe correct objects. Replayldentities willbe
generated automatically by the replay system but there are occasions when you may like a particular
replay object to take on the identity of a different object. This can be usefulto record data fromone
objectbutreplay on a different object as used in some use cases such as ghost vehicles. Take a look
at identity transfer for more information.

Replay Scene

Replay State

A replay state is a storage device that is passed to all recorder components and is used to store
primitive data typesintoa data stream. Some Unity types such as Color and Vectors are also

14 |Page

Trivial Interactive 2020

supported for ease of use. Any time you need to manually record or restore any replay data, a
ReplayState will be passed which you can use to write to or read from.

ReplaySnapshot

A ReplaySnapshot contains the entire state data of the active ReplayScene ata giventime stamp.
Multiple snapshots stored in order can be used to recreate the scene over a period of time much like
a slideshow or keyframe animation. These snapshots are used as a higher-level storage device and
can be storedto and fetched froma ReplayStorageTarget directly. You will not need to deal with
ReplaySnapshots directly butit is a good ideato understand what they are and their purpose.

Replay Scene

A ReplayScene representsacollection of ReplayObject s which should be usedin arecord or replay
operation. By default, Ultimate Replay 2.0 will use all ReplayObject s in the active scene for all
record and replay operations unless you manually specify a custom replay scene. Replay scenesare
also responsible fora process called state preparation which is required for playback. Essentially, any
componentsthat could interfere with playback such as rigid bodies, colliders or scripts needto be
prepared before playback commences.

Replay Storage Target

A ReplayStorageTarget isan end storage device used to store the data that is recorded by the replay
system. The data thatis generated by the replay systemis in the form of a ReplaySnapshot which s
then flushed to the active ReplayStorage whenitshould be stored. The StorageTarget could be
anything from a memory storage target to file storage or more.

Replay Recorder Component

Recordercomponents are used torecord and replay an associated Unity component. For example,
the ReplayTransform componentis intendedtorecord and replay the Unity Transform component
of a specific object. There are many other recorder components built and it is also possible to create
your own recorder components for unsupported or 3™ party components.

15|Page

Trivial Interactive 2020

Replay a Game Object

In orderto create a replay for your game using Ultimate Replay 2.0, you will need to decide which
game objects should be replayable so that the necessary replay components can be added. The
objects which are replayable will depend largely on the specificgame butgenerally you will wantto
add replay components to any game objects which move, are animated, have effects such as particle
systems etc. There are some exceptions but again this will depend onyourgame. An example would
be an animated crowd in a sports game. It may not be necessary torecord the whole crowd as you
could just continue playing the animations during the replay.

Good candidates for replay objects are game objects that are core to the gameplay such as the
player, enemies, projectiles, effects, sound effects, etc. Basically, any game object whichis not
stationary and whose behaviour does not consist of static continuous animation or similar. In some
cases, you may needto replay custom gameplay elements which are not supported by built in
components. Forexample:a GUI overlay which displays chat text or similar.

Once you have determined which game objects should be replayable, youthen need to add the
appropriate replay components. There are many replay components builtin to Ultimate Replay 2.0
which are coveredinthe Recorder Components section. Forgame objects that move, you will want
to add a ReplayTransform componentsothat the game objecttransform will be recorded and
replayed. For Animator components you will wantto add a ReplayAnimator componentandso on.

Note: A ReplayObject component will automatically be added when you attach a replay component to a
game object. This is a required component and will manage one or more recorder components.

Once you have added the necessary replay components, you should have aworking replay system
which will record and replay the state of all observed components. You just need to use the
ReplayManager APl tostart and stop recording and playback. To quickly test outyour newly added
replay components, you can use the built in Replay Controls interface which will handle the record
and replay APl calls while providing a simple and easy to use interface.

Take a look at the included demo scenes to see how various replay techniques can be implemented
and which replay components are used to do so.

Game Object Hierarchy

If you have a game object with one or more children that needto be recorded thenthere are some
things to consider. Itis importantthat a ReplayObject componentis attached to the highest-level
game objectthat has a replay componentattached. The ReplayObject component will usually be
added automatically when attaching a replay component to a game object but in some casesit may
not be added at the correct level. Take the following examples:

6|Page

Trivial Interactive 2020

= Hierarchy o -— || © Inspector 54 Mavigation =

| Create '| (arAll | -

¥ | GameObject 2] static =
i * .=
Y @ il — Tag | Untagged 4| Layer | Default i
Main Camera
. . =
Directional Light ¥ .~ Transform i -
¥ GameObject Position ®o Y0
¥ GameObject 1 Rotation |0 Y0
GameObject 2 Scale ®|1 1
¥ = [Replay Transform (Script) @ = &
Script ReplayTransform @
Replay Identity (21231 |
Replay Object | 26019 (GameOhject 2) |
Replay Position HYZ [Local] Lerpl¥ LP[]
Replay Rotation HYZ o Local] Lerpls LP[]
Replay Scale e[e[Rzl Lerp[] LP[]
C':J This replay component generates '30' Bytes per sample on average
¥ = [« Replay Object (Script) et - 8
Seript ReplayObject o]
Replay Identity |ze013 |

Prefab Identity | 52462 |
» Replay Components (1)

(1) This replay object generates '43' Bytes per sample on average

As you can see fromthe screenshots, ‘GameObject’ 2 has a ReplayTransform componentadded
which causes a ReplayObject componenttobe added automatically at the same level. This is fine
because there are noreplay components attached to game objects higherin the hierarchy.

If we wanted to add a ReplayTransform componentto ‘GameObject 1’ then this would cause an
issue. If we selected ‘GameObject 1’ and then went to ‘Tools -> Make Selection Replayable -> Replay
Transform’ then we would end up with the same components as ‘GameQObject 2’. The problem s
that both objects will have a ReplayObject componentattached which is inefficient and may cause
issues. In scenarios like this, it is enough to simply remove the ReplayObject componentattached
to ‘GameObject 2’ and now the hierarchy setupis perfectly valid. The highest-levelreplay

componentinthe hierarchy has the only ReplayObject componentattached which will now
manage both ReplayTransform components.

Note: An exception to this rule is if ‘GameObject 2’ in the above example was a prefab instance, in which

case multiple ReplayObjects would be the way to go in order to support dynamic creation and
destrouction.

For animated objects with a humanoid structure you can use the Replay Humanoid Configuratorin
orderto add ReplayTransform componentstoall bonesin the hierarchy.

17| Page

Trivial Interactive 2020

Replay Manager

The Replay Manageris the main interface for Ultimate Replay andis used to control and query all
replay operations using the static API. If you are coming from Ultimate Replay 1.0 you may already
be familiar with the Replay Managerhoweverinversion 2.0 there are some majordifferences. It
may be worth taking a look at the Upgrade Guide section if you haven’t already as this section covers
some of the majorchanges fromthe original asset.

The ReplayManageris a type that defines the main APl of Ultimate Replay 2.0 and will be used by
your games scripts to control the replay system. The ReplayManagerisimplemented as a static API
for ease of use, meaningthat you can call its methods from any script without requiring an object
reference. This means that there is no scene representation of the ReplayManager unlike the
original asset. This means that scene changes do not cause issues or interfere with the replay syste m
in any way.

Main API

The following section will cover many essential or usefulmethods of the ReplayManager thatyou
may need to use in your game. Note that not all methods are covered in this sectionand it is
recommended that you take a look at the included scripting reference forafull APl overview.

BeginRecording

Use this method to start a new recording operation using the specified ReplayScene and
ReplayStorageTarget . Ultimate Replay 2.0 supports any number of simultaneous record operations
and the returned ReplayHandle is used to identify the operation.

C# Code

1 public static ReplayHandle BeginRecording(ReplayStorageTarget,
2 ReplayScene, bool, bool, ReplayRecordOptions)

e ReplayStorageTarget (recordTarget): The ReplayStorageTarget usedtostore the recorded
data. When nullis passed, the ReplayManager .DefaultStoragetTarget is used.

e ReplayScene (recordScene): The ReplayScene usedtorecord data from. The scene cannot
be empty unless allowEmptyScene is enabled. When nullis passed, ReplayScene
.CurrentScene is used for recording.

e Bool (cleanRecording): Should the storage target be cleared before recording starts. Default
is true.

e Bool (allowEmptyScene): Can an empty scene be passed to this method. When enabled, you
can pass a ReplayScene instance with no registered ReplayObject s. This may be useful if
youintend to instantiate one or more ReplayObject s duringrecording. See replay prefabs
for more information. Default value is false.

e ReplayRecordOptions (recordOptions): The replay record options use to specify many
record preferences. When nullis passed, the global project options editable via the settings
window will be used.

StopRecording
Use this method to stop an already running record operation that was previously started using
BeginRecording.

18|Page
Trivial Interactive 2020

C# Code

1 public static void StopRecording(ref ReplayHandle)

e ReplayHandle (recordHandle): The ReplayHandle of the record operation that should be
stopped. The handle must be passed by reference and will be disposed by the replay system
meaningit should no longerbe used.

IsRecording
Use this method to determine whetherarecording operationis currently running with an associated
replay handle.

C# Code

1 public static bool IsRecording(ReplayHandle)

e ReplayHandle (recordHandle): A ReplayHandle to check forrunning record operations.
Disposed replay handles can be passed which will cause a value of false to be returned.

SetPlaybackTime

Use this method to seekto a specific time in the replay. The time value is in seconds and must be
between 0and the recording duration. The specified ReplayHandle should be associated with a valid
running or pause playback operation.

C# Code

1 public static void SetPlaybackTime (ReplayHandle, float,
2 PlaybackOrigin)

e ReplayHandle (recordHandle): The ReplayHandle of the playback operation that should have
its playback time offset changed.

¢ Float (playbackTimeOffset): The time offset value in seconds used to calculate the final seek
time based upon the ‘origin’ parameter. This time value acts as a negative offset when an
origin value of ‘End’ is specified.

e PlaybackOrigin (origin): Used to specify the replay marker where the time offset should be
relative to. By default, this value is set to ‘Start’ meaningthat the specified time value is
absolute. Options are:

o Start: The specified time offsetvalue isrelative to the start of the recording, or the
‘zero’ time stamp.

o Current: The specified time offset value is relative to the currentreplay position. For
example:If the current replay positionis ‘5 seconds’ and a time offset value of ‘2
seconds’ is specified, then playback will seek to the ‘7 second’ mark, assuming that
the time value is within the bounds of the recording duration. Negative time offset
values can be used with this origin option if required.

o End: The specified time offset value will be taken as a negative value (A positive
value must be specified) and will represent the amount of time in seconds from the
end of the recording. For example: If the recording duration is 10 seconds’ in length
and a time offsetvalue of ‘3 seconds’ is specified, then playback will seek to the ‘7
second’ mark.

19|Page

Trivial Interactive 2020

SetPlaybackTimeNormalized
Use this method to seek to a position in the replay using normalized offset values. This method is
usefulif you want to seek though areplay without taking the duration of the recording into account.

C# Code

1 public static void SetPlaybackTimeNormalized(ReplayHandle, float,
2 PlaybackOrigin)

e ReplayHandle (handle): The ReplayHandle of the playback operation that should have its
time offset changed.

e Float (playbackNormalizedOffset): A normalized value between 0-1which is used to
represent the offsetvalue between to replay marker points.

e PlaybackOrigin (origin): Used to specify the replay marker where the normalized offset
value should be used to represent the time offset value. By default, this value is set to ‘Start’
meaning that normalized offset indicates the absolute time offset relative to the replay
duration. Options are:

o Start: The specified normalized offsetis taken from the start of the recording. This
means that a value of ‘0’ represents the start of the recording and a value of ‘1’
represents the end of the recording. Passing a value of ‘0.5’ will cause playback to
seek tothe middle of the replay.

o Current: The specified normalized offsetis taken from the current replay position.
For example:Ifthe currentreplay positionis setto the absolute middle of the
replay, passing a value of ‘0.5’ will cause playback to seektothe % mark in the
replay since the normalized value represents the offset between the currentand
endreplay markers.

o End:The normalized offsetis used to represent the offsetfromthe end of the
recording. This means that a value of ‘0’ represents the lastframe in the replay (Or a
time stamp equalto the duration of the recording) and a value of ‘1’ representsthe
very start of the recording. |.e. the offsetis normalized and inverted.

SetPlaybackDirection
Use this method to change the direction of a replay. Usefulif you want to add rewind effects or
simply view a replay in reverse.

C# Code

1 public static void SetPlaybackDirection(ReplayHandle,
2 PlavbackDirection)

e ReplayHandle (handle): The ReplayHandle of the playback operation that you wish to
modify. The handle should representavalid and active playback operation started using
BeginPlayback.

e PlaybackDirection (direction): The direction that you want playback to run. The default
value if ‘Forward’ which will play the replay in the normal forward direction. Options are:

o Forward: Play the replayin the normal forward direction.
o Backward: Play the replay in reverse direction.

20| Page
Trivial Interactive 2020

SetPlaybackTimeScale

Use this method to change the playback speed. The timescale represents the speed thata replay will
run where avalue of ‘1" is standard playback speed and a value of ‘2’ is twice the standard playback
speed. Values between 0-1 will cause playback to be slowed where a value of ‘0.5’ represents half
speed.

C# Code

1 public static void SetPlavbackTimeScale (ReplavHandle, float)

e ReplayHandle (handle): The ReplayHandle of the playback operation that you want to
modify the playback speed of. The handle should represent avalid and active playback
operation started using BeginPlayback.

e Float (timescale): Atime scale value used to specify the playback speed of a replay. The
defaultvalue of ‘1’ representsthe standard playback speed. Note that negative values can
be specified to cause reverse playback as an alternative to SetPlaybackDirection.

GetPlaybackTime

Use this method to retrieve the ReplayTime information for a specific playback operation. The
ReplayTime result contains information such as absolute playback time stamp, playback frame delta
and currenttime scale.

C# Code

1 public static ReplavTime GetPlavbackTime (ReplavHandle)

e ReplayHandle (handle): The ReplayHandle of the playback operationto query. The handle
should be associated with a valid and active playback operation started by calling
BeginPlayback.

BeginPlaybackFrame

Use this method to enter playback mode in fixed frame mode. Fixed frame mode meansthat
playback mode is active butthe replay will not update meaning only a single playback frame will be
shown. Full playback operations such as seeking are supported. Usefulfor showing a fixed frame of a
replay. Paused playbackis an alternative.

C# Code

1 public static ReplaHandle BeginPlaybackFrame (ReplayStorageTarget,
ReplayScene, bool, ReplayPlaybackOptions)

e ReplayStorageTarget (replaySource): The ReplayStorageTarget used as the playback source.
The replay will be streamed by fetching snapshots from the storage target on demand. Pass
‘null’ to use the default storage target.

e ReplayScene (playbackScene): The ReplayScene used to specify which scene objects should
be replayed. This allows you to mask the captured data if required so that some objects are
not replayed, eventhough they were recorded. Pass the default value of ‘null’ in order to
use all active ReplayObject sin the currentscene.

e Bool (allowEmptyScene): A value which determines whetheran empty ReplayScene canbe
passed or not. An empty ReplayScene will have no valid ReplayObejcts to record but may
still cause some metadatato be recorded which may be undesirable. Passing ‘false’ will

21| Page

Trivial Interactive 2020

cause the method tothrown an exceptionif the specified ReplayScene does notcontainany
ReplayObejcts. In some scenarios, it may be desirable to use and empty ReplayScene . For
example: When dynamically spawned objects are used, an empty scene may be allowable in
which case you can pass ‘true’ to disable empty scene exceptions.

ReplayPlaybackOptions (playbackOptions): The options used by the playback service which
determines much of the playback behavioursuch as frame rate and end behaviour. The
defaultvalue of ‘null’ causes the global project playback options to be used which are
accessible via the settings window. You can also programmatically create the playback
settings per playback operationif required.

BeginPlayback

The main method usedtostart a previously captured replay. This will cause the replay system start a
new playback operation using the specified storage target as the data source and the specified
ReplayScene todetermine which objects are replayed. The specified ReplayScene does not
necessarily have to match up to the storage targetalthough a harmless warning may be generated if
not. In some cases, you may record 2 objects but only want to replay 1 object. This can be achieved
by usingthe ReplayScene tocreate a mask by removing 1 of those objects. Even though the storage
target will contain information about 2 objects, only the objects added to the ReplayScene will be
replayed. This method will returna ReplayHandle value which will be used for all subsequent state
change and query operations.

C# Code

public static ReplaHandle BeginPlayback(ReplayStorageTarget,
ReplayScene, bool, ReplayPlaybackOptions)

ReplayStorageTarget (replaySource): The ReplayStorageTarget used as the playback source.
The replay will be streamed by fetching snapshots from the storage target on demand. Pass
‘null’ to use the default storage target.

ReplayScene (playbackScene): The ReplayScene used to specify which scene objects should
be replayed. This allows you to mask the captured data if required so that some objects are
not replayed, eventhough they were recorded. Pass the default value of ‘null’ in order to
use all active ReplayObject sin the currentscene.

Bool (allowEmptyScene): A value which determines whetheran empty ReplayScene canbe
passedor not. An empty ReplayScene will have no valid ReplayObejcts to record but may
still cause some metadatato be recorded which may be undesirable. Passing ‘false’ will
cause the method tothrown an exception if the specified ReplayScene does notcontainany
ReplayObejcts. In some scenarios, it may be desirable to use and empty ReplayScene . For
example: When dynamically spawned objects are used, an empty scene may be allowable in
which case you can pass ‘true’ to disable empty scene exceptions.

ReplayPlaybackOptions (playbackOptions): The options used by the playback service which
determines much of the playback behaviour such as frame rate and end behaviour. The
defaultvalue of ‘null’ causes the global project playback options to be used which are
accessible via the settings window. You can also programmatically create the playback
settings per playback operation if required.

22| Page
Trivial Interactive 2020

StopPlayback

Use this method to stop a replay that was previously started by calling one of the BeginPlayback
methods. This method will cause any replaying objectsto be restto live mode, triggering the
associated ReplayPreparerto restore component states. You must also pass the ReplayHandle for
the playback operation by reference as the handle will be set to an invalid state since the playback
operation will no longer exist.

C# Code

1 public static void StopPlayback(ref ReplayHandle, bool)

e Ref ReplayHandle (handle): The handle fora running playback operation started using
BeginPlayback. The handle must be passed by reference usingthe ‘ref’ keyword because it
will be no longer be valid and will have its state reset to reflect this.

e Bool (restorePreviousSceneState): An optionalvalue which determines whetherthe original
scene state prior to commencing playback should be restored or not. The replay system will
automatically record the scene state upon entering playback mode so that it can be reset if
required. Passing ‘false’ will cause all replaying objects to be leftin their current position.
This could potentially leave objectsin mid air or in overlapping collision statesso it is
recommended that most users use the default value of ‘true’ to resettoa known saf e state.

IsReplaying
Use this method to determine whethera playback operationis currently running with an associated
replay handle.

C# Code

1 public static bool IsReplaying(ReplayHandle)

e ReplayHandle (handle): A ReplayHandle to check forrunning playback operations. Disposed
replay handles can be passed which will cause a value of false to be returned.

AddPlaybackEndListener
Use this method toadd an eventlistenerforwhen a playback operation reaches the end of a replay.
This is usefulto know when a replay has finished so that you can perform some otheraction.

C# Code

1 public static void AddPlavbackEndListener (ReplavHandle, Action)

e ReplayHandle (handle): The handle of a valid playback operation that was started using
BeginPlayback.

e Action (playbackEndCallback): The delegate which will be invoked when the associated
playback operation reachesthe end of a replay. The specified delegate must have a return
type of ‘void’ and not have any parametersin order to be accepted.

Note: A matching ‘Remove Listener’ method also exists to remove an added listener but has been
omitted from this documentation. See the included scripting reference for more information.

23| Page

Trivial Interactive 2020

Replay Settings

Ultimate Replay 2.0 has a number of global settings which affect various aspects of the asset. Usually
the default settings will be OK for most games but they can easily be changed by going to ‘Tools ->
Ultimate Replay -> Settings’ which will open the global settingsin the inspector window. The settings
window is also where you will add prefab references to objects which may be destroyed or
instantiated dynamically while recording. Take a look at the Replay Prefabs section for more
information.

The following section will coverthe main settings which can be found on the default ‘General’ tab:

E UltimateReplaySettings g 5 #
| open |
Record Options
Record FPS - 12
Record Update Method | Update

Playback Options

Playback FPS -1
Playback Update Method | Update 4
Playback End Behaviour | End Playback s

Replay Frefabs
1, ReplayCube (ReplayObject) @ IEJ
| Add Prefab

e Record FPS: The record frame rate used to determine how many snapshotframes are
captured persecond. The default value is ‘12" which will usually be more than enough for
most games when interpolationis used.

e Record Update Method: The Unity update event used to update the entire replay system
during the recording phase. This option is mostly for compatibility reasons and allows replay
capturesto occur at different pointsin the game loop. The default optionis Update which
will be fine for most games and all supported options are:

o Update: Use the main Unity update method to update the recording phase of the
replay system.

o lLate Update: Use the Unity late update method to update the recording phase of
the replay system.

o Fixed Update: Use the Unity physics update method to update the recording phase.
This is notrecommended unless you are havingissues with the first 2 update
methods.

e Playback End Behaviour: Determines what happens whenareplay reachesthe end of its
recording. Options are:

o End Playback: The playback operation will automatically finish and cause the
associated ReplayObject s to be prepared forgameplay by switching to live mode.

o Stop Playback: The replay will stop onthe very last frame of the recording but will
remain in playback mode. This means that playback operations such as seeking will
still work as expected and you will need to manually call StopPlayback to exitreplay
mode.

24| Page
Trivial Interactive 2020

o Loop Playback: The replay will loop around tothe start whenthe endframeiis
reachedresultingin an infinite looping replay. You will need to call StopPlayback
manually to exit replay mode. This mode is usefulforafter gameplay highlights that
run until player inputis received.

e Playback FPS: The replay frame rate used to determine how often playback operations are
updated. Higher playback frame rates will resultin smooth replays, evenif the record fpsis
low. This is because playback runs interpolation on the recorded snapshots meaningthatit is
possible to create virtual snapshotsin between recorded snapshots with the effect of
interpolated smoothing, much like in keyframe animation systems. The defaultvalueis ‘-1’
which meansthat playback will run at the game FPS which is recommended. Lower playback
FPSvalues can be used if you experience playback performance issues but playback frame
rateslower thanthe recorded FPS are not recommended.

e Playback Update Method: The Unity update event used to update the entire replay system
during the replay phase. This option is mostly for compatibility reasons and allows replay
updatesto occur at different pointsin the game loop. The default optionis Update which
will be fine for most games and all supported optionsare:

o Update: Use the main Unity update method to update the playback phase of the
replay system.

o Late Update: Use the Unity late update method to update the playback phase of the
replay system.

o Fixed Update: Use the Unity physics update method to update the playback phase.
This is notrecommended unless you are havingissues with the first 2 update
methods.

e Replay Prefabs: A collection of prefabreferencesto ReplayObject sthat may be instantiated
or destroyed during recording. In order for Ultimate Replay 2.0 to support dynamic object
creation and destruction during recording, you will need toinformthe replay system about
any prefabs that may be dynamic by adding themto the prefabs collection. Instantiating or
destroying a prefabinstance during recording that is not added to this collection will result
in playback accuracy issues along with a warning message. Take a look at the Replay Prefabs
section for more information.

The next section will cover additional settings which can be found on the ‘State Preparation’ tab and
relate to the built in Default Replay Preparer. As of version 2.1.0, the default replay prepareris now
fully configurable to make it easier for usersto change its behaviour.

25| Page

Trivial Interactive 2020

@ 3 &,

UltimateReplaySettings l
|Open |

I General State Preparation

Default Replay Preparer Configuration

71 This configuration anly applies when using the included 'Default Replay
Wi/ Preparer' for replay state preparation

Ignore Component Types

UltimateReplay.ReplayObject
UltimateReplay.ReplayBehaviour
UnityEngine .Camera

UnityEngine AudioSource
UnityEngine ParticleSystem

Add Type

Component Processaors

UnityEngine Animator
Enabled [

UnityEngine .Behaviour
Enabled [+

UnityEngine.Collider
Enabled [

UnityEngine. Collider2D
Enabled o

UnityEngine Rigidbody
Enabled [

UnityEngine.Rigidbody2D
Enabled [+

Ignore Component Types: A collection of component types which will be ignored by the
defaultreplay preparer. This means that they will notbe processed or affectedin any way
when switching between playback and live modes.

This collection will already contain a few types which are added by defaultand we
recommend thatthey remain in most cases. Adding new types can be done easily by clicking
the ‘Add Type’ button and selecting your desired componenttype fromthe resulting context
menu. Types are organised by ‘[namespace]-> [type name] to make them easiertofind:

Animator

Animation [Account -] [Layers -] [Layout -]
AudiolowPassFilter aviaation £ =
AudioHighPassFilter UnityEngine.Al ¥
AudioReverbFilter UnityEngine ¥
AudioBehaviour UnityEngine.Animations ¥
Audiolistener UnityEngine.Rendering]
AudicReverbZone UnityEngine.Playables >
AudioDistortionFilter UnityEngine Experimental. U2D ¥
AudicEchoFilter UnityEngine. Tilemaps ¥
AudioChorusFilter UnityEngine.Networking.Match ¥
Cloth UnityEngine.Experimental VFX >
FlareLayer UnityEngine. XR.WSA ¥

Component Processors: This section contains settings foreach component processorthatis
used by the default replay preparer. Acomponent processoris simply a special type which
prepares a specificcomponent for either playback or live modes. Typically, these processors
will either deactivate or disable their target component when entering playback mode and
restore the target componentto their original state when exiting playback mode.

26|Page

Trivial Interactive 2020

Each component processor has the following options:

o Enabled:Is the component processorenabled. A disabled component processor will
not run and as a result, will have no effecton the target componentwhenthe scene
is being prepared.

27| Page

Trivial Interactive 2020

Replay Scene

A replaysceneis usedto representacollection of ReplayObject s which should be recorded or
replayed. Whenyoustart a record or replay operation using the ReplayManager, you will usually
need to pass a ReplayScene instance which will describe which objects should be includedin the
operation. You can create any numberor ReplayScene s at a given time although you should take
care not to start multiple operations on a single scene at the same time as this is not supported. For
example, multiple record and replay operations can occur at the same time but not with the same
scene instance. The ReplayManager will throw an exceptionisa scene instance is already in use.

Replay Scene Mode

A replaysceneis a state objectand can eitherbe in live or playback modes. Changingthe scene
mode will cause all registered ReplayObject s to be prepared usingthe active replay preparerso
that they are ready to receive record or replay updates.

e Live Mode: All ReplayObject s are resetto their initial state usingthe active replay
preparer. This meansthatall scripts, physics components etc. are restore d to their initial
state. Usually meaning that they are re-enabled or re-activated so that they can interact
with the game as usual.

e Playback Mode: All ReplayObject s are preparedforreplay updates by the active replay
preparer. Scripts and physics components will be disabled to preventthem from
manipulating the objects during playback allowing the replay systemto replicate the
recording accurately.

Replay Preparers

A replay prepareris a special script which is executed on every ReplayObject in the ReplayScene
whenthe scene mode is changed. The purpose of the replay prepareris to find and modify any
componentsonthe specified ReplayObject which could potentially interfere with playback
accuracy. Components such as Rigidbodies or scripts are likely candidates as they could potentially
move an object during a replay causing it to become out of place according to the recorded data.
The state of such componentsis then saved or restored by the preparerdepending upon the state
change so that the component can be deactivated during playback.

By default, a built-in replay preparer called the DefaultReplayPreparer will be used to prepare
ReplayObject s butit is possible to create your ownreplay preparerscript if required. The default
preparer will potentially affect the following component types:

¢ MonoBehaviourscripts (Unless they derive from ReplayBehaviour): Scripts will be disabled
so that the ‘Update’ methods do not run.

e Physicsrigid body 2D / 3D: Rigid bodies will be set to kinematicmode so that forcessuch as
gravity do not affect the object.

e Physics colliders 2D / 3D: Colliders will be disabled so that collision resolution cannot affect
playback.

e Animator: Animators will be disabled so that animation poses cannotbe applied during
playback.

28| Page

Trivial Interactive 2020

Note: Script components deriving from ReplayBehaviour will not be modified by the default replay
preparer. You can derive from this class if you need to prevent a script from being disabled during playback
on a particular reolav obiect.

Note: Replay preparers work on a per object basis and will only affect ReplayObjects which were added to
a ReplayScene. Entering or exiting playback mode will trigger the preparer to run on all ReplayObjects
which are added to the active RenlavScene instance.

Custom Replay Preparer
If you find that the defaultreplay prepareris affecting components that you do not want it to, you
could implementyourown replay preparerso that you have full control over which components are

affected.

Creatinga customreplay prepareris as simple as implementing an interface and thenregistering it
with the replay system. First you will need toimplement the ‘UltimateReplay.Core.IReplayPreparer’
interface which has 2 methods:

e PrepareForPlayback: This method will be invoked when potentialinterferingcomponents
should be deactivated because the replay system s entering playback mode. The method
will be invoked a number of times foreach ReplayObject in the scene. You will need touse
the Unity APl to find such componentsand handle them accordingly.

e PrepareForGameplay: This method will be invoked when exiting playback mode as a result
of calling StopPlayback and will run on all ReplayObject sin the associated ReplayScene.
This method should be used to restore any modified components to their initial state.

If you wish toimplementa custom ReplayPreparerthen it may be worth taking a look at how the
default prepareris implemented by examining the source code. You can find the default preparer
implementation in the following source file (N ot available in the trial version): ‘Assets/Ultimate
Replay 2.0/Scripts/Core/DefaultReplayPreparer.cs’. It may also be worth checking out the dedicated
component preparers which can be found inside the ‘StatePreparation’ folder.

C# Code
1 class ExamplePreparer : IReplayPreparer
2 | |
3 public void PrepareForPlayback (ReplayObject replayObject)
4 {
5 foreach(Collider collider in
6 replayObject.GetComponents<ReplayObject>())
7 collider.enabled = false;
}
8
9 public void PrepareForGameplay(ReplayObject replayObject)
10 {
11 foreach(Collider collider in

12 | replayObject.GetComponents<ReplayObject>())
13 collider.enabled = true;

14 }

15 | }

Once you have implemented a custom replay preparer, the nextstepis to registerit sothat the
replay system can make use of it. A replay preparerinstance is associated with every ReplayScene
instance as the preparerneedstobe run onevery ReplayObject in the ReplayScene . This means

29|Page

Trivial Interactive 2020

that you can provide an IReplayPreparerimplementation in the constructor of the ReplayScene
type. If no prepareris passed, thenthe default prepareris used automatically.

class Example : MonoBehaviour

{
void Start ()
{
ReplayScene scene = new ReplayScene (new ExamplePreparer());
scene.AddReplayObject(...);
ReplayManager.BeginPlayback (null, scene);
}
}

Note: It is possible to implement different replay preparers for different playback operations if required.
For example: you may want some replays to have colliders enabled so that the player can interact with
them while you may want another replay to be unaffected. This is possible by creating multiple
ReplayScene instances.

30|Page

Trivial Interactive 2020

Replay Prefabs

Ultimate Replay 2.0 is able to record and replay game objects which are instantiated or destroyed
dynamically using the Unity API. There are some things to consider in order for this behaviourto be
supported though:

e Thetarget prefabshould have a ReplayObject componentattachedtothe root object. This
componentis used to identify the prefaband any amount of recorder components can also
be attachedin orderto record and replay specific elements of the object like transform.

e Prefabobjectsneedto be registered with Ultimate Replay 2.0 via the settings window
otherwise dynamicinstantiation/creation will not work. This allows the replay systemto
know which prefabthe game objectinstance was created from during the recording phase
so that the replay system can then destroy or create an identical instance during playback.

e Parentingis only supported whenthe prefabisinstantiated and attached as a child to a
game object which also has a ReplayObject componentattached. Forexample:Ifyou
wanted to instantiate a weapon during recording and attach it to the players hand bone in
the hierarchy, then the hand bone should have a ReplayObject component. The replay
system will then re-create this hierarchy structure during recording. This is one case where
it is OK to have multiple ReplayObject components onthe same game object, one at the
playerroot, and one at the hand bone.

e Afterinstantiating a prefab, you will need toadd a reference toany applicable ReplayScene
s in order forthe replay system to be notified of the object creation.

Registering Replay Prefabs

As previously mentioned, allprefab objects that need to be instantiated or destroyed during the
recording phase need to be registered with Ultimate Replay 2.0 so that identical instances can be
created on demand during playback. This is an easy process and only takes a couple of steps.

The first thing you will need to do is identify any prefabs which will need to be instantiated or
destroyed while recording. Usually this may include prefabs like bullets or projectiles, effects that
are spawned, and maybe even enemy characters. Once you have identified these prefabs thenyou
should ensure that the prefab root has a ReplayObject componentattachedtoit as the replay
system will use this for identification purposes. Any numberor replay recorder components such as
ReplayTransform can also be added at the same hierarchy level or lower.

= Hierarchy | grem| © Inspector [EINaVigatian &=
Create ™ oAl \ I‘ | [SoldierFinalAnimations || static =
v € untitled* = 7 Tag [Untagged +] Layer [Default l
Main Camera Model | Select Revert [Open]
'Dlrectlona\ Light SR e EE
Position x[o
> Base_Male Rotation x[0 Yo
> BaseMaleRig
» martinez_danisl_GAMZ_1810_Boss_Fight:FPS_Rigl:Assault_Rifle:AssaultRifle_Mesh E=db XL Yl ZlL
» martinez_daniel_GAMNZ_1810_Boss_Fight:FPS_Rigl:Assault_Rifle_Ctrls ¥ 12 @ Animator [P
» RRM_MAIN Contraller None (Runtime Animator Controller) | ©
- Avatar < SoldierfinalAnimationsAvatar El
Apply Root Motion O
Update Mode | Mormal]
Culling Mode | Cull Update Transforms 4]
Clip Count: 0
(1) Curves Pos: 0 Quat: O Euler: 0 Scale: 0 Muscles: 0 Generic: 0 PPtri 0
w2/ Curves Count: 0 Constant: 0 (0.0%) Dense: 0(0.0%) Stream: 0 (0.0%)
¥ = MReplay Object (Script) @
Script ReplayObject [}
Replay Identity 13839
Prefab Identity 14477
Replay Companents (None)
(1) This replay sbject generates '1' Byte per sample on average

You can add a ReplayObject componenttothe selected object by goingto ‘Tools -> Ultimate Replay
->Make Selection Replayable -> ReplayObject ’.

31|Page

Trivial Interactive 2020

Once you have your prefabs setup correctly, the nextstep is to register them with Ultimate Replay
2.0 which is done using the settings window. Open the settings window by going to ‘Tools ->
Ultimate Replay -> Settings’ where you will see a foldout named ‘Prefabs’. Expand this section until
yousee an array property:
¥ Prefabs
¥ Prefabs

Size 1
Element 0 ReplayCube (ReplayObject) =]

You will need to add any dynamicprefabs to this array by resizing the array and then usingdrag and
drop to assign your prefabs.

¥ Prefabs

¥ Prefabs
Size 2
Element 0 ReplayCube (ReplayObject) @
Element 1 SoldierFinalAnimations (ReplayObject) @

Repeat this step forany other dynamic prefabs that you may need to register with the replay
system. You can always add or remove the prefabreferences at alater date as you develop and

refactoryour game.

Register via script

Usingthe settings window is the easiestand recommended way of registering your prefabs with the
replay systembut it is also possible to doit froma script. It is also quite a simple process and
requiresonly a single method call but there are some things to note:

e You will needtoensure thatyou registerthe dynamic prefab before you begin recording
otherwise there may be issues with instantiating or destroyingthose prefabinstances.

e The methodacceptsa game objectargument which should be the prefab objectand not a
prefabinstance. Passing a prefab instance may cause issues during playback.

o The prefab object passedtothe method musthave a ReplayObject componentattached at
the prefab root.

To registera prefab dynamically from a script you will need to use the ‘ReplayManager
.RegisterReplayPrefab’ method as shown here:

C# Code
1 class Example : MonoBehaviour
2 |
3 // Assign in inspector
4 public GameObject myPrefab;
5 .
6 void Start ()
{
U // Register the prefab
g ReplayManager.RegisterReplayPrefab (myPrefab) ;
10 // Record operations can now start
11 ReplayManager.BeginRecording(...);
12 }
13 }

32|Page
Trivial Interactive 2020

Note: Registering a dynamic prefab via script is not persistent like the settings approach so it will need to
be performed on every game session. There is also no way to unregister areplay prefab once it has been
added

Instantiating Replay Prefabs

Once you have registered your dynamic prefabs with Ultimate Replay 2.0, you are now able to call
‘Instantiate’ during the recording phase in orderto create an instance of that prefab. Once you have
instantiated a prefab, you will then need to add it to a replay scene manually so that it will be
recorded like all other ReplayObject s. There are a few ways to achieve this:

Using Replay Scene
As covered previously, a ReplayScene willusually be passedtothe replay begin methods such as
BeginRecording. This means that the creation and management of this scene instance is handled by

the userand as a result, adding a replay prefab to that scene is trivial:

C# Code
1 class Example : MonoBehaviour
2 |
3 private ReplayScene recordScene;
4 . L
5 // Assign in inspector
6 public GameObject myPrefab;
7 .
void Start()
8 {
9 // Create a scene instance
10 recordScene = ReplayScene.FromCurrentScene() ;
11
12 // Start recording
13 ReplayManager.BeginRecording (null, recordScene);
14
15 // Create instance as usual in Unity
16 GameObject go = Instantiate(myPrefab);
17)))
18 // Add replay prefab instance to scene so that it is

recorded
recordScene.AddReplayObject (go.

21 GetComponent<ReplayObject>()) ;
}

N =
o 0

Using Replay Manager

An alternative and possibly easierapproach is to use the ReplayManager to add the newly created
replay object. The main benefit of this approach is that it is possible to add the replay objecttoall
active recording scenes if multiple scenes are currently recording.

33| Page

Trivial Interactive 2020

class Example : MonoBehaviour
{

private ReplayScene recordScene;

// Assign in inspector
public GameObject myPrefab;

void Start ()
{
// Create a scene instance
recordScene = ReplayScene.FromCurrentScene() ;

// Start recording
ReplayManager.BeginRecording (null, recordScene);

// Create instance as usual in Unity
GameObject go = Instantiate(myPrefab);

// Add to recording scenes

ReplayManager.AddReplayObjectToRecordScenes (go.
GetComponent<ReplayObject>()) ;

}
}

As you can see by the name of the method, this will cause the replay objectto be addedtoall active
ReplayScene swhich are in use by a running record operation.

Destroying Replay Prefabs

Destroying prefab instances duringrecording is an even easier process. There is noneed to
unregisterthe prefab instance when you are destroyingit since it is detected automatically when the
reference becomes null. This means thatit is just a case of destroying your game object like you
would normally using the Unity API:

34|Page
Trivial Interactive 2020

class Example : MonoBehaviour

{

private ReplayScene recordScene;

// Assign in inspector
public GameObject myPrefab;

IEnumerator Start()
{
// Create a scene instance
recordScene = ReplayScene.FromCurrentScene() ;

// Start recording
ReplayManager.BeginRecording (null, recordScene);

// Create instance as usual in Unity
GameObject go = Instantiate(myPrefab);

// Add to recording scenes
ReplayManager.AddReplayObjectToRecordScenes (go.
GetComponent<ReplayObject>()) ;

yield return new WaitForSeconds (2f);

// Destroy the prefab instance
Destroy(go) ;

If you are using a pooling system to instantiate and destroy your prefab instances, then you will need
to manually unregisterthe replay object fromthe replay system manually since the object reference
will not become null. This is due to the fact that most pooling systems will simply deactivate game
objects but keep themin memory sothe reference remainsvalid.

Unregistering a replay object froma ReplayScene manuallyis quite simple to do and unlike the
instantiate approach, there is only one way that this can be done. You will need areference tothe
ReplayScene thatyouare using forrecording and the you can unregisterthe object like so:

35|Page

Trivial Interactive 2020

class Example : MonoBehaviour
{

private ReplayScene recordScene;

// Assign in inspector
public GameObject instance;

IEnumerator Start()
{
// Create a scene instance
recordScene = ReplayScene.FromCurrentScene() ;

// Start recording
ReplayManager.BeginRecording (null, recordScene);

// Use your favourite pooling asset to despawn the object
SomePoolingAPI.Despawn (instance) ;

// Remove the object from the scene and it will no longer be
recorded

recordScene.RemoveReplayObject (go.
GetComponent<ReplayObject>()) ;

}
}

Afterfollowingthese steps, you should now be able to create and destroy prefab instances during
recording and have themreplayed withoutissue. Objects that were instantiated during recording
will be created automatically during playback on demand and objects that were destroyed willalso
disappear during playback as you would expect.

Take a look at the included cubes demo scene which demonstrates this technique in a working
example.

36| Page

Trivial Interactive 2020

Replay Storage Target

In orderto record objectsin the scene, astorage device is required which has the responsibility of
storing the recorded data in some form. These storage devices are known as ReplayStorageTarget s
and there are many differenttypesincluded with Ultimate Replay 2.0 by default. In addition, it is
also possible to create your own storage target if the built-in targets do not meetyourneeds by
implementing an abstract class. This is only recommended foradvanced users though.

Anytime you need tostart recording or replaying, you will need to provide a ReplayStorageTarget
as the source to read data from, or the target to write data to.

Replay Memory Target

A replay memory targetis used to store replay data in memory as the name suggests. The data may
be compressed toreduce storage space but you should still be wary about memory usage when
recording large or complex scenes with a high number of recorder components. Take alook at the
replay statistics section which shows how you can identify the memory used by stored data.

The replay memory target supports limited, unlimited and rolling recording modes to supporta
variety of use cases howeveryou should take care with memory usage inlarge or complex scenes
with many replay components. A limited or rolling buffer memory targetis recommended in most
cases.

C# Code
ReplayStorageTarget target;

// Create an unlimited memory target
target = ReplayMemoryTarget.CreateUnlimited();

// Create a rolling memory target to record the last 15s of gameplay
target = ReplayMemoryTarget.CreateTimeLimitedRolling (15) ;

// Create a memory target limited to a size of 65565 bytes in size
target = ReplayMemoryTarget.CreateMemorySizeLimited ()

O 00 ~NO UL B WN PR

e Limited: A limited memory targetcan be usedtorecord a replay up to s specified memory
size without exceedingthatvalue. The constructoracceptsan integervalue which
represents the maximum number of bytes that the memory target can store. If a write
operation occurs when the memory targetis full, an OutOfMemory exception will be raised.

Note: The memory size specified does not include any overhead that may be allocated by the memory
target in order to support storage, compression and read operations.

e Unlimited: A memorytargetthat is not limited in any way to the amount of data that can be
stored. This means that you can theoretically record data until the system runs out of
memory. We highly recommend that you only use an unlimited memory target if you target
if you will be recording for short periods or will carefully monitor the memory usage on
many test systems to ensure that it remains acceptable. You can use the replay statistics to
getusage information and also the Unity profiler window.

¢ RollingBuffer: A rolling buffermemory targetis usedto record the last X amount of
gameplay continuously. The time value can be specified viathe constructorin secondsand

37|Page

Trivial Interactive 2020

the memory target will record data until the target time is met. Fromthenon, every new
second of data recorded will cause the very first second of the recordingto be deleted
resultingin the target containing only the last X amount of seconds of gameplay. This is a
common technique used in games that make use of killcam or similar where you are only
interested inrecording the players last few seconds before they are killed.

Replay Stream Target

A ReplayStreamTargetis a storage target that is able to write to and read from a System.Stream
object. The replay data is storedin a proprietary binary format that is highly optimized for reduced
storage space and loading time. Any System.Stream implementationis supported as long as the
following features are implemented:

e Stream.Seek: Required whenreadingthe replay data as data is stored in chunks which are
discoverable via lookup tables.

e Stream.Position: Required during reading and writing to calculate offsets.

e Stream.Length: Required during reading and writing to calculate negative offsets and data
sizes.

The ReplayStreamTarget uses threading to stream chunks of replay data without blocking the main
thread. This allows for seamless playback as chunk prediction algorithms are also used to pre-fetch
data that may be required while in playback mode. Note that some platforms such as WebGLdo not
supportthreadingin which case these asyncoperations will be loaded back ontothe main thread
automatically which may cause stutters or jitterin replays. A ReplayMemoryTargetis recommended
on these platforms if possible as there is much less overhead in terms of
compression/decompression.

A ReplayStreamTarget storage device can be created forrecording or replaying purposes usingthe
following method:

C# Code

1 // Create a stream to hold the data

2 Stream stream = new MemoryStream() ;

3

4 // Create a storage target from the specified stream
5 ReplayStorageTarget target =

= ReplayStreamTarget.CreateReplayStream(stream) ;

Note: This approach works for both saving and loading a replay using a stream object. If you want to load
a replay, then ensure that you pass a Stream object containing valid replay data and everything will work
as expected.

Replay File Target

A ReplayFileTarget can be usedto stream a recording or a replay to or fromfile. This is highly useful
if you needto create recordings that persist over multiple game sessions oreven uploadthemto a
sharing service or similar for other players to view. The ReplayFileTarget is built ontop of the
ReplayStreamTarget component and as a result, will generate the same data output using the same
streamingtechniques.

38| Page

Trivial Interactive 2020

A ReplayFileTarget storage device can be created as shown below, depending upon whetheryou
want to create a file, or read from an existing replay file. The resulting storage target can then be
passedto BeginRecording or BeginPlayback in orderto record or replay using the target.

C# Code
1 ReplayStorageTarget target = null;
2
3 // Create a new file with the specified path for recording
4 target =
5 ReplayFileTarget.CreateReplayFile("ReplayFiles/example.replay");
6 // Create a new file with a unique generated name for recording
7 target = ReplayFileTarget.CreateUniqueReplayFile("ReplayFiles/",
8 " re l " .
.replay");
9
208 // Load an existing replay file
11 | target =
12 | ReplayFileTarget.ReadReplayFile("ReplayFiles/example.replay");

Note: If you have already created a replay file and have a reference to that storage target, you can simply
pass the reference to BeginPlayback and the target will automatically switch into read mode so that the
replay can be streamed.

Custom Replay Storage Target
If the built-in storage targets do not meetyour needsforanyreason, thenitis possible to create
your own storage target by implementing and abstract class. You will need toimplement the

‘UltimateReplay.Storage.ReplayStorageTarget’ abstract class and is only recommended foradvanced

users. The details of the implementation will not be covered here butthe APlis coveredin the

included scripting reference. You can also take a look at the source code for the built-in targets such

as ReplayMemoryTargetto see how the storage device isimplemented.

39| Page

Trivial Interactive 2020

Replay Object

A ReplayObject is an essential replay component which mustbe attached to any game object that
will record or replay data. The ReplayObject componentactsas a managingcomponentandis
responsible for uniquely identifying the game object and managing any recorder components that
may be attached, including child objects. Generally, you willonly have a single ReplayObject
component attached to the root of a game object hierarchy unless you are dealing with prefab
instances. Recorder components such as ReplayTransform s can then be attached to the same
game object or any child objectsand will be automatically detected and managed by the Immediate
parentor adjacent ReplayObject .

The main purpose of the replay objectis to uniquely identify a game objectin the replay systemso
that the necessary replay data can be distributed to the correct game objects during playback. A
ReplayObject is identified by the Replay Identity property whichis a persistentid value for the
object. Anyrecorded datais stored along with the Replayldentity.

Note: ReplayObject components will be added automatically where applicable when adding a component
deriving from ReplayBehaviour. A ReplayObject component will be added when no suitable adjacent or
parent ReplayObject is found.

Inspector

The ReplayObject componenthasa custom inspectordrawer which displays usefulinformation
aboutthe component.

v = ¥ Replay Object (Script) e
Script ReplayObject Q
Replay Identity 42121
Prefab Identity 8661

» Replay Components (52)

':_.r;' This replay object generates '1,88' KB per sample on average

e Replay Identity: A unique and persistentid value used by the replay system to identify the
game object. This value will be generated automatically when addinga ReplayObject
componentoron game start for prefab instances.

e Prefabldentity: A unique id value that is used to identity the associated prefab if any. Note
that this value will still be generated even if the parent game objectis not a prefab instance.
See replay prefabs for more information.

e Replay Components: A list of replay components that are managed by this ReplayObject .
Componentswillbe displayed by their object name and component type and will be
indented according to their hierarchy depth for clarity. Note that this list is read-only and is
updated automatically whenreplay components are added orremoved.

Identity Transfer

A ReplayObject and replay recordercomponents all have unique id values which are generated by
the replay systemtoidentify each componentto the replay system. These id values are then used
during playback toroute the necessary replay datato the correct componentfordeserialization. This
workswell and is an efficient means of storage since an object can be identified by a 2-byte value (2
bytes by defaultbut 4 bytesis supported).

40 |Page
Trivial Interactive 2020

In some scenarios, it may be desirable to modify the identity of a game objectforreplay purposesso
that it is able to replay the recorded data from anotherobject. An example where this may be useful
would be a ghost vehicle in a racing game where you would want to record the player vehicle but
replay onto anotherghostvehicle object. This can be achieved by transferring the identity of a
source objectonto a target object using identity transfer. Ultimate Replay 2.0 has a quick and easy
way to do this but there are some things to consider:

e Thesource andtarget objects should have the same hierarchy structure where replay
components are attached.

e Thesource andtarget replay objects should have the same observed component countand
order.

A good way to ensure that these replay components are structured the same is to duplicate the
source object (The playervehicle in this example) and create the new target object by modifying the
duplicate (The ghostvehicle).

Once you have 2 objects that share the same replay hierarchy thenyou can transferreplay identities
at any time by calling the following method:

C# Code

1 bool ReplayObject.CloneReplayObjectIdentity(ReplayObject,
2 ReplayObject)

This method takes a source object as the first parameterand the target objectas the second
parameter. Using the ghost vehicle example, we would pass the player vehicle object first and the
ghostvehicle objectsecond. The method willthen copy and apply the replay identities of all
attached replay components onto the target object.

Thereis also an overload method which accepts 2 game objects for ease of use. This method will
simply getall ReplayObject componentsfromthe source and target objects and clone each one.

C# Code

1 bool ReplayObject.CloneReplayObjectIdentity (GameObject, GameObject)

41 |Page

Trivial Interactive 2020

Replay Behaviour

A ReplayBehaviour is a componentthat derives from MonoBehaviourand has many useful
contextualreplay properties and events. It may be usefulto create script componentsthatderive
from ReplayBehaviour whenthey will be attachedto a recorded object. In addition,
ReplayBehaviour components are not affected by Replay Preparers so it may be usefulto derive
fromthis base class if your script need to run while in playback mode.

The ReplayBehaviour type hasa number of useful properties such as IsRecording and IsReplaying
which will allow you to determine the current state of the associated game object. These properties
are contextualand not global like in the original asset. That means that some game objects may be
in recording mode while others may be in playback mode at the same time since multiple
simultaneous replay operations are now supported. These contextual properties allow you to
determine the true replay state of a specific object.

Replay Messages

The ReplayBehaviour componenthasa number of virtual methods that can be overridden and will
be called by the replay system at various times. These message events may be usefultoyourgame
components when the state of the replay system changes. Note that these messages are contextual
and will only be called on the relevant ReplayBehaviour ssince differentrecordingand replay states
are possible for different objects.

OnReplayStart
Called whenthe parent game objectis about to start replaying. This is triggered as a result of a call

to BeginPlayback.

C# Code

1 public virtual void OnReplayStart() ;

OnReplayEnd
Called whenthe parent game objectis about to end playback. This could be triggered as a result of
an EndPlayback call or if the replay reachesthe end of the recording.

C# Code

1 public virtual void OnReplayStart():;

OnReplayPlayPause

Called whenthe parent game objectis about to pause or resume playback. This is triggered as a
result of calling PausePlayback or ResumePlayback. The boolvalue passed to the eventindicates
whetherthe pause state is enabled or disables where a value of ‘true’ means paused.

C# Code

1 public virtual void OnReplayPlayPause (bool) ;

42 |Page

Trivial Interactive 2020

OnReplayReset

Called whenthe behaviourshould reset ordiscard any cached values or data as playback may be
aboutto begin. This is usefulforresetting any interpolation data or similar that may be stored
between replay frames.

C# Code

1 public virtual void OnReplayReset () ;

OnReplayCapture

Called when the behaviour should submit any replay data for recording. This event will only be called
during recordingand is usefulto submit event or method record data by calling RecordEvent or
RecordMethodCall. Note that replay data can also be submitted via update methods or similar but
you must take care to only record data during recording phases.

C# Code

1 public virtual void OnReplayCapture() ;

OnReplayUpdate

Called whenthe behaviour should update during playback. This method will only be called during
playback and will be passed the current ReplayTime information for the associated replay. This event
is usefulfor updating any replay elements such as interpolation at full game speed. The passed time
value includes information about the current playback time and delta time between frames which
may be usefulforinterpolation.

C# Code

1 public virtual void OnReplayUpdate (ReplayTime) ;

OnReplayEvent

Called when the behaviourshould read replay event data. Whenyou record an event using
RecordEvent, this method will be invoked during playback with the eventid and state data. Theid
value is usedto identify the eventtype and the event datais an option data state that was passed to
the RecordEvent method. You will need to read the state data in the correct formatand orderto
avoid errors.

C# Code

1 public virtual void OnReplayEvent (ushort, ReplayState);

OnReplaySpawned

Called whenthe parent game object was instantiated for playback purposes by the replay system. A
replay registered prefab instance must be instantiated during recording in order for this methodto
be triggered during playback. The initial position and rotation of the object as passed.

C# Code

1 public virtual void OnReplaySpawned(Vector3, Quaternion);

43 |Page

Trivial Interactive 2020

Replay Events

Replay events can be used whenyou want to record a change in state or similar that does not
happen often. You can record an event during the recording phase and the replay system will invoke
the OnReplayEvent callback of the ReplayBehaviour componentwhen thatevent was reached
during playback. A ReplayEventis made up of an eventid value which is specified by the user, along
with an optional ReplayState containingany data associated with the event. Itis the responsibility of
the userto specify unique eventid values and to ensure that any event datais serialized and
deserialized in the correct format.

In orderto record a ReplayEvent, you will first need to create a script derivingfrom ReplayBehaviour
. You can then call the RecordEvent method while the objectis recording in orderto record a replay
event. You can make use of the IsRecording property of the ReplayBehaviour componentto check
for the recording phase. Alternatively, you can also override the OnReplayCapture event which will
only be called during the recording phase.

C# Code
1 class Example : ReplayBehaviour
2 |
3 float lastTime = 0;
4
5 void Update()
{
s // Record a replay event every second
. if (IsRecording == true && Time.time > lastTime +)
{
9 // Add optional data to the event
10 ReplayState state = ReplayState.pool.GetReusable()
11 state.Write("Hello World");
12
13 // Record an event
14 RecordEvent (1, state);
15
16 lastTime = Time.time;
17 }
18 }
.

As you can see in the above code example, areplay eventis recorded every second that the objectis
beingrecorded. Note that we need to passan eventid value which in this case is set to a value of ‘1’
but the eventid can be any value between 0-65565. We also pass an optional ReplayState tothe
RecordEvent method containing a simple string, but we could also add much more useful

information here or event pass ‘null’ if no data is required.

Receiving replay events during playback s just as simple and involves overriding the OnReplayEvent
callback of the ReplayBehaviour script:

44 |Page

Trivial Interactive 2020

C# Code

1 class Example : ReplayBehaviour

{
g public override void OnReplayEvent (ushort eventID, ReplayState
4 eventData)
5 {
6 switch (eventID)
7 {)

case 1:

8 {
9 Debug.Log("Event 1: " 4+ eventData.ReadString()):;
10 break;
11 }
12 }
13 }
14 | }

The OnReplayEvent callback will be invoked by the replay systemforevery eventtype. You will then
needtofilter the events by eventid as shownin the code example and handle the eventaccordingly.
In this case, we simply check for our eventid of ‘1’ and print out the string value that was recorded
to the console.

Replay Methods

Replay methods can be used to record and replay method calls of any static or instance method of a
ReplayBehaviour script. Only methods that accept primitive parameters such as int, string, bool etc.
are supported and the replay system will log an error if an unsupported parametertype isused. In
orderto record a method, you can simply use the following ReplayBehaviour methods:

C# Code

public void RecordMethodCall (Action method)

public void RecordMethodCall<T>(Action<T> method, T arg)

public void RecordMethodCall<TO, T1>(Action<TO, T1> method, TO argO,
Tl argl)

public void RecordMethodCall<TO0, Tl, T2>(Action<TO, T1, T2> method,
TO0 arg0, Tl argl, T2 arg2)

public void RecordMethodCall<TO, Tl1, T2, T3>(Action<TO, T1, T2, T3>
method, TO arg0, Tl argl, T2 arg2, T3 arg3)

PN O LA WN

As you can see, there are a number of overload methods which allow any method with any
parametertype to be supported, limited toa parameter count of 4. The following code
demonstrates how to use these methods:

45| Page
Trivial Interactive 2020

C# Code

1 class Example : ReplayBehaviour
2 | |
3 void Update()
4 {
5 if (IsRecording == true)
{

3 RecordMethodCall (DoSomething) ;
3 RecordMethodCall (DoSomethingElse, "Hello World", 3);
5 }

}
10
11 void DoSomething ()
12 {
13 Debug.Log("Hello") ;
14 }
15
16 void DoSomethingElse(string message, int count)
17 { o . .
18 for(int i = 0; 1 < count; i++)
19 Debug.Log (message) ;

}
20 }

As you can see in the example, the methods are passed as delegates as the firstargumentand then
you may or may not need to specify the additional arguments forthe target method. Parameters at
index 1 and onwards will be the arguments forthe target method in order. You can seein the
example code thata string and integerargument need to be passed when recording the
DoSomethingElse method otherwise acompilererror will be generated.

Method recording should only be done when the ReplayBehaviour is currently recording which can
be determined by checking the IsRecoreding property. Alternatively, you can do all of the recording
inside the OnReplayCapture eventwhich will only be called during the recording phase.

Calling RecordMethodCallduring recording will cause the method to be invoked immediately with
the specified arguments, as if calling it directly. The method information will then also be serialized
by the replay system along with the specified arguments so that the method can be called again
during playback.

Note: Methods that return a value cannot be recorded by the replay system. If you want to record a

method that returns avalue, then you should create a void wrapper method to call that target method,
disreaardina the return value. You can then record the wrabber method as normal.

Replay Variables

Replay variables are a simple and convenient way of recording and replaying primitive class variables
withoutthe need to write the serialize and deserialize code. Any field defined in a class deriving from
ReplayBehaviour can use replayvariables as long as the type is a primitive such as int and string, or
if the type is a Unity Vector3, Quaternion or Color. You can mark a variable as replayable by adding
the ReplayVarattribute as shown below:

46 |Page
Trivial Interactive 2020

class Example : ReplayBehaviour

{
[ReplayVar]
public int myValue = 50;

Once a field has been marked as a re play variable, you can change its value during recording and any
changes will be restored during playback. This is all done automatically by the replay system which
makes it quick and easy to implement.

class Example : ReplayBehaviour

{
[ReplayVar]
public int myValue = 50;

void Update ()

{
if (IsRecording == true)
{
myValue++;
}
else if(IsReplaying == true)
{
Debug.Log (myValue) ;
}
}

Note: ReplayVariables may have a little more overhead in the way of storage space when compared with
custom recorder components. This is because extra metadata needs to be stored along with the data.

Replay variables also fully supportinterpolation if the type supportit. By default, values of type int,
float or similar will be interpolated during playback to smooth out transitions which may or may not
be desirable. If you are recording values like state id’s or index values, then interpolation should
preferably be disabled to prevent strange behaviour. This can be done by simply passing ‘false’ in the
attribute declaration.

class Example : ReplayBehaviour
{

[ReplayVar (false)]

public int myValue = 50;

47 |Page
Trivial Interactive 2020

Recorder Components

Recorder components are special components that can be attached to a game objectand are
intended torecord and replay the behaviour of another component. Forexample, A
ReplayTransform componentis usedto record and replay the Unity transform component.
Ultimate Replay 2.0 hasa number of built in recorder components which can be usedtorecord a
number of Unity components which may or may not be usefulforyourgame.

Every recorder component must have a ReplayObject componentattachedtothe same game
objector to a game object higher in the hierarchy. If no suitable ReplayObject componentisfound
when attaching a recorder component, Ultimate Replay 2.0 will automatically add the ReplayObject
componenttothe same object.

Recorder components will also display information about the amount of data they generate per
recording sample. This information will usually be displayed at the bottom of the inspector window
for the componentina help box. Note that some components may only be able to display this data
whenin play mode.

Replay Transform

The ReplayTransform componentcanbe addedto a game objectand will cause the transform of
that objectto be recordable and replayable by Ultimate Replay 2.0. Position, rotation and scale
values can be recorded and replayed in various configurations and the component also supports
frame interpolation for smoother playback.

|:E:| This replay component generates '30' Bytes per sample on average

Create Menu

A ReplayTransform componentcanbe addedvia the menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Transform’. This will cause a ReplayTransform componentto be
addedto the selected game object and may also attach a ReplayObject componentif required.

Inspector
The ReplayTransform componenthasa number of properties which can be edited via the inspector
window. Multi-object editing is supported for this component.

¥ = [« Replay Transform (Script) @ 3
Script ReplayTransform @
Replay Identity | 63069 |
Replay Object | 50945 (RPG-Character (1) |
Replay Position HYZ [Local | Lerpls® LP[|
Replay Rotation HYZ o Local [| Lerpls LP[|
Replay Scale]l zl] Lerp s/ LP| |

I:_[;l This replay component generates '30' Bytes per sample on average

e Replay Identity: The unique id value given to the component by the replay system. This
value is auto-generated.

e Replay Object: The unique id value of the associated replay object thatis managingthe
component. Name information may also be included for quick lookup.

e Replay Position: Should the positional aspect of the transform be recorded.

48 | Page

Trivial Interactive 2020

XYZ: When enabled, all elements of the position will be recorded. You can disable
this toggle to select individual positional elements if required.

Local: When enabled, location position will be recorded as opposedtoworld
rotation. Local recording is recommended when the game objectis a child of
anotherobject.

Lerp: Should linear interpolation be used during playback for smooth frame
transitions. Interpolation is highly recommended as it allows for much lower
recording frame rates.

LP: Should the recorded data be stored in low precision. This is only recommended
for objects that do not move much, are not in the main focus of a cameraview and
are nottoo fare from the world centre (+-1000 units max). This will cause the data to
be storedin half precision so some accuracy may be lost.

e Replay Rotation: Should the rotational aspects of the transform be recorded.
o XYZ: When enabled, all axis of rotation will be recorded and stored as a quaternion

data structure to avoid gimbal lock. When disabled and all axis are not selected, the
data will be stored as Euler angles for the selected axis. Disable this toggle to select
individual axis elements for recording.

Local: When enabled, local rotation will be recorded as opposed to world rotation.
Local recordingis recommended when the game objectis a child of anotherobject.
Lerp: Should linear interpolation be used during playback to smooth rotation
between playback frames. Interpolation is highly recommended and allows for much
lowerrecording frame rates.

LP: Should the recorded rotation be stored in low precision. This is only
recommended forobjects that do not move much, are not in the main focus of a
camera view and are not too fare from the world centre (+-1000 units max). This will
cause the data to be storedin half precision so some accuracy may be lost.

e Repay Scale: Should the scale aspects of the transform be recorded.

O

O

XYZ: When enabled, all elements of the transform scale will be recorded. Disable
this toggle to select individual record axis. By default, scale recording is disabled as it
is not often required.

Lerp: Should linear interpolation be used during playback to smooth scale between
playback frames. This option is disabled by defaultfor the scale elementasit may
cause undesirable behaviourif you intend to snap between 2 scale values.

LP: Should the scale data be recorded in low precision.

49 |Page

Trivial Interactive 2020

Replay Enabled State

The ReplayEnabledState componentis used to record and replay an objects active state as set using
SetActive. Thisis usefultorecord objects that may become active or inactive during recording and
will cause the same behaviour during playback.

Create menu

A ReplayEnabledState component can be added via the menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Enabled State. This will cause a ReplayEnabledState componentto be
addedto the selected game object and may also attach a ReplayObject componentif required.

Inspector
This component does not have any editable inspector properties but does display information that
may be useful.

¥ « [Replay Enabled State (Script) ﬁ il < 8
Script ReplayEnabledstate @
Replay Identity | 2638 |
Replay Object | 61751 (GameObject (2)) |

'i_[;' This replay compenent generates '1' Byte per sample on average

e Replay Identity: The unique id value given to the component by the replay system. This
value is auto-generated.

e Replay Object: The unique id value of the associated replay object thatis managingthe
component. Name information may also be included for quick lookup.

Replay Component Enabled State

The ReplayEnabledComponentState componentis much like the ReplayEnabledState component but
is used to record the state of behaviour components. This is usefulto record the state of
components such as scripts deriving from ReplayBehaviour which will be replayed. Note that non-
ReplayBehaviour scripts will usually be disabled when entering playback mode by the
ReplayPreparer soyoushould only record non-script behaviours or scripts deriving from
ReplayBehaviour which are treated specially by the ReplayPreparer.

Create menu

A ReplayComponentEnabledState component can be added via the menu ‘Tools -> Ultimate Replay -
> Make Selection Replayable -> Replay Component Enabled State. This will cause a
ReplayComponentEnabledState componentto be added to the selected game object and may also
attach a ReplayObject componentif required.

Inspector
This component does not have any editable inspector properties but does display information that
may be useful.

50| Page

Trivial Interactive 2020

¥ = ¥ Replay Component Enabled State (Script)

3#1'

Script ReplayComponentEnabledState

o]

Replay Identity | 16410

Replay Object 61751 [GameObject [21)

Observed Component |None (Behaviour)

| @

l:__t:,' This replay companent does not genarate any data

Replay Identity: The unique id value given to the component by the replay system. This

value is auto-generated.

Replay Object: The unique id value of the associated replay object thatis managingthe
component. Name information may also be included for quick lookup.

Observed Component: A reference to abehaviour component thatshould have its enabled
state recorded. Itis recommended thatthe assighed behaviouris attached to the same
object hierarchy although it is notrequired. If no behaviouris assigned then no data will be

recorded.

Trivial Interactive 2020

51| Page

Replay Animator

The ReplayAnimator componentis used torecord and replay the animation state driven by the
Unity Animator component. Thisis useful for recording animated characters or objects which use
the Animator component. The component will serialize all necessary state datafor the animator
including parameters so that the animation state can be recreated during playback.

Create menu

A ReplayAnimator component can be added via the menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Animator. This will cause a ReplayAnimator componentto be added
to the selected game object and may also attach a ReplayObject componentif required.

Inspector

The ReplayAnimator componenthasal number of inspector properties which affect how and what
datais recorded. The default options will usually be sufficient for most games howeverit may be
desirable to play around with the options to getthe most accurate playback results using as little
storage space as possible. This is especially true for Animator components which do not define any
parameters.

¥ = [¥ Replay Animator (Script) @ = %
Script ReplayAnimator @
Replay Identity | 56007 |
Replay Object | 21469 (GameObiect (3)) |
Observed Animator %= GameObject (3) (Animator) @
Replay Main Layer 4
Replay Sub Layers [
Interpolate 4
Low Precision O
Replay Parameters [
Interpolate Int Parameter [«
Interpolate Float Paramet [«

|:_.';| Replay sample data will be displayed here during play mode

e Replay Identity: The unique id value givento the component by the replay system. This
value is auto-generated.

e Replay Object: The unique id value of the associated replay objectthatis managingthe
component. Name information may also be included for quick lookup.

e Observed Animator: The animator component thatshould be recorded and replayed. When
adding the component, the observed animator property may be automatically filled out with
any animator componentattached tothe same game object. It is recommended that the
assigned Animator componentis attached to the same game object or hierarchy.

e Replay Main Layer: When enabled, the main layer of the Animator state machine will be
recorded and replayed.

e Replay Sub Layers: When enabled, all additional layers of the Animator state machine will
be recorded and replayed.

¢ Interpolate: Should animation poses be interpolated between replay frames to give a
smootherplaybackresultin low record FPS scenarios. Interpolation is highly recommended
to produce smoothresults with minimal stored data.

e Low Precision: When enabled, data will be storedin low precision where supportedin order
to reduce the storage space required. This is not recommended foranimated objects that
are close to the cameraas there may be some data loss causing slight inaccuracies during
playback.

52|Page

Trivial Interactive 2020

Replay Parameters: Should the Animator state machine parameters be recorded. Itis highly
recommended that parameters are recorded if they are used in order to create an accurate
replay.

Interpolate Int Parameters: Should integer parameters of the animator state machine be
interpolated during playback. Interpolation is not recommended if the int parameteris used
as an index/state value orsimilar and notas a numerical value as it could cause strange
behaviourduring playback.

Interpolate Float Parameters: Should floating point parameters of the animator state
machine be interpolated during playback. This may be usefulfor parameters such as move
speed orsimilar which can be smoothergradually between replay frames.

53| Page

Trivial Interactive 2020

Replay Particle System

The ReplayParticleSystem componentis used to record and replay the Unity particle system
component. The component works by serializing the particle system simulation time during the
recording phase and thenre-simulating to that timestamp during the playback phase.

Create menu

A ReplayParticleSystem component can be added via the menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Particle System. This will cause a ReplayParticleSystem componentto
be added to the selected game objectand may also attach a ReplayObject componentif required.

Inspector
The ReplayParticleSystem has some required and optional propertiesin order for the componentto
work correctly which can be setup via the inspector window.

v « [¥ Replay Particle System (Script) @ = %
Script ReplayParticleSystem @
Replay Identity 29361
Replay Object 18648 (GameObject)

Observed Particle System Mone (Particle System) @
Interpolate 4
(;.E:' This replay component does not generate any data

e Replay Identity: The unique id value of the recorder component which is auto-generated by
the replay system whenthe componentisadded.

e Replay Object: The unique id value of the managing ReplayObject thatis responsible for
this recorder component. The property may also include component name information for
easy lookup.

e Observed Particle System: A reference to the Unity particle system component that should
be recorded and replayed. Thisis a required value and leaving it empty will cause the
componentto do nothing.

e Interpolate:Should the particle system by interpolated during playback to produce
smootherresults where low record frame rates are used.

Replay Audio

The ReplayAudio component can be usedto record and replay a Unity audio source sothat game
sound effects can be used in replays. The audio component works by detecting audio played froma
specific AudioSource component and then storing data such as sample rate and time values so that
the audio can be replayed during playback.

Create menu

A ReplayAudio component can be added via the menu ‘Tools -> Ultimate Replay -> Make Selection
Replayable -> Replay Audio. This will cause a ReplayAudio componentto be added to the selected
game objectand may also attach a ReplayObject componentif required.

Inspector
The ReplayAudio component has a number of inspector properties that determine which data is
recorded and can be used to optimize for playback accuracy vs storage size.

54| Page

Trivial Interactive 2020

v = ¥ Replay Audio (Script) @ 5 %
Script Replayaudio]
Replay Identity 34094
Replay Object 41601 (GameObiect (1))

Observed Audio Mone (Audio Source) (o]
Replay Pitch
Replay Volume

Replay Stereo Pan
Replay Spatial Blend
Replay Reverb Zone Mix
Interpolate

Low Precision

D000

l'\[;l This replay component does not generate any data

Replay Identity: A unique ID value used to identify the component which is auto-generated
by the replay system when the componentis added.

Replay Object: The unique ID value of the associated managing ReplayObject component
which is responsible for updating this recorder component.

Observed Audio: A reference to a Unity AudioSource component which will be used to
record and replay any emitted audio. If this value is not assigned, then the ReplayAudio
component will do nothing. Note thatthe observed audio source should have a single audio
clip assigned which should not be changed at any time.

Replay Pitch: Should the pitch value of the audio source be recorded. You can disable this
value if the pitch value of the audio source will neverchange duringrecording or playback.
Replay Volume: Should the volume value of the audio source be recorded. You can disable
this value if the volume will never change during recording or playback.

Replay Stereo Pan: Should the stereo pan value of the audio source be recorded. Only
required if the stereo pan value will change during recording or playback.

Replay Spatial Blend: Should the spatial blend value of the audio source be recorded. Only
required if the spatial blend value of the audio source will change during recording or
playback.

Reverb Zone Mix: Should the reverb zone mix value of the audio source be recorded. Only
required if the reverb zone mix of the audio source will change during recording or playback.
Interpolate: Should the audio source time sample value be interpolated to create smoother
audio playback. Disabling this option may cause strange audio playback if low record rates
are used.

Low Precision: Should the component record supported datain low precision mode to
consume less storage space.

55| Page

Trivial Interactive 2020

Replay Material Change

The ReplayMaterialChange component can be used to record and replay any material changes of a
renderer component. Material changes will be detected automatically while recording and the
component will attempt to restore the correct material during playback from a pool of possible
materials that you can setup.

Create menu

A ReplayMaterialChange component can be added via the menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Material -> Material Change’. This will cause a ReplayMaterialChange
componentto be added to the selected game objectand may also attach a ReplayObject
componentif required.

Inspector

The ReplayMaterialChange component has some inspector properties which can be used to control
how the renderer material is recorded. There is also usefulinformation displayed here such as the
replayid usedto identify the componentinthe replay system.

v = |¥ Replay Material Change (Script) @ 5 %
Script ReplayMaterialChange o]
Replay Identity 53291
Replay Object 10745 (Cube)

Observed Renderer _Cube (Mesh Renderer) o]
Default Material W TestMateriall]

» Available Materials
Shared Material (o
Replay All Materials -

'::_.'} This replay component generates '3' Bytes per sample on average

e Replay Identity: The unique ID value used to identify the recorder componentin the replay
system. This value is auto-generated when the componentis added to a game object.

e Replay Object: The unique ID value of the managing ReplayObject componentthatis
responsible for updating this recorder component.

e Observed Renderer: A reference toa Unity renderer component whose materialshould be
recorded and replayed.

o Default Material: A fallback material instance that will be used when the assigned material
could not be restored. Typically, this will occur when you assign a material instance that has
not been added to the ‘Available Materials’ array. By default, this material will be set to the
main material of the rendererat the time of addingthe component.

e Available Materials: A collection of material instance that could potentially be assigned to
the observedrenderer. The ReplayMaterialComponentis only able to restore materials that
have been addedto this collection and assigning a different material will cause the
componentto fallback to the ‘Default Material’ during playback.

e Shared Material: Should the component record and replay using the ‘sharedMaterial’
property of the renderer. Thisis highly recommended because the ‘material’ property of the
rendererwill be used if this value is disabled. The ‘material’ property will allocate a new
material instance on access.

e Replay All Materials: Enable this option if yourtarget renderer has more than one material.
This will ensure that material changes for all material slots are recorded and replayed.

56| Page

Trivial Interactive 2020

Replay Material

The ReplayMaterial component can be used to record and replay properties of a material assigned
to a specified renderer component slot. This is usefulfor recording material properties such as color
change overtime.

Create menu

A ReplayMaterial component can be added via the menu ‘Tools -> Ultimate Replay -> Make Selection
Replayable -> Replay Material -> Material Properties. This will cause a ReplayMaterial componentto
be added to the selected game objectand may also attach a ReplayObject componentif required.

Inspector

The ReplayMaterial component has some inspector properties which can be usedto control how the
renderer materialis recorded. There is also usefulinformation displayed here such as the replay id
used to identify the componentin the replay system.

¥ = |« Replay Material (Script) @ = #,
Script ReplayMaterial @
Replay Identity | 54500 |
Replay Object | 10745 (Cube) |
Observed Renderer . Cube (Mesh Renderer) @
Material Index =i
Shared Material ™4
Replay Color ™4

Replay Main Texture Offsel [|
Replay Main Texture Scale [|
Replay Double Sided GI [
Replay Global Illumination []
Interpolate]

I:;.[;l This replay component generates 'S' Bytes per sample on average

e Replay Identity: The unique ID value used to identify the recorder componentin the replay
system. This value is auto-generated when the componentis added to a game object.

e Replay Object: The unique ID value of the managing ReplayObject componentthatis
responsible for updating this recorder component.

e Observed Renderer: A reference toa Unity renderer component whose material properties
should be recorded and replayed.

e Material Index: The index of the material that you want to record. This index value
represents the materialindex into the observed renderers material collection. Use a value of
‘-1’ if the main material of the renderershould be used. Note thatyou can use multiple
ReplayMaterial components on the same rendererto record properties for multiple
materials.

e Shared Material: Should the component record and replay using the ‘sharedMaterial’
property of the renderer. Thisis highly recommended because the ‘material’ property of the
renderer will be used if this value is disabled. The ‘material’ property will allocate a new
material instance on access.

e Replay Color: Should the color property of the target material be recorded and replayed.

e Replay Main Texture Offset: Should the main texture offset of the target material be
recorded and replayed.

e Replay Main Texture Scale: Should the main texture scale of the target material be recorded
and replayed.

e Replay Double Sided Gl: Should the double-sided globalillumination property of the target
material be recorded and replayed.

57|Page

Trivial Interactive 2020

Replay Global lllumination: Should the global illumination flags of the target material be
recorded and replayed.

Interpolate: Should supported material properties be interpolated between frames to
provide a smooth transition. For supported properties such as color, this will create a
smooth blend effect overtime between the last and target color.

58| Page

Trivial Interactive 2020

Replay Line Renderer

The ReplayLineRenderer component can be used to record and replay the Unity line renderer
component. Note that this component can potentially use a lot of storage space so it is worth
keepingan eye on the statistics information displayed in the inspector window.

Create menu

A ReplayLineRenderer component can be added via the menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Line Renderer. This will cause a ReplayLineRenderer componentto be
addedto the selected game objectand may also attach a ReplayObject componentif required.

Inspector

The ReplayLineRenderer component has some inspector properties which can be used to control
how the line rendererisrecorded. There is also usefulinformation displayed here such as the replay
id used to identify the componentin the replay system.

v = ¥ Replay Line Renderer (Script) @ 3 %
Script ReplayLineRenderer [c]
Replay Identity | 23284 |
Replay Object | 22414 (GameObject (1)) |
Observed Line Renderer MNone (Line Renderer) o}
Interpolate ™4

i
I_!_(I This replay component does not generate any data

e Replay Identity: The unique ID value used to identify the recorder componentin the replay
system. This value is auto-generated when the componentis added to a game object.

e Replay Object: The unique ID value of the managing ReplayObject componentthatis
responsible for updating this recorder component.

e Observedline Renderer: Areference toa Unity line renderer component which will be
recorded and replayed. Itis recommended thatthe assigned line rendererexists onthe
same game object, althoughiit is not a requirement.

e Interpolate: Should the line renderer positions be interpolated during playback. This will
produce smootherresultsif low record rates are used and is highly recommended.

59 |Page

Trivial Interactive 2020

Replay Trail Renderer (Unity 2018.2 or newer)

The ReplayTrailRenderer component can be used to record and replay a Unity trail renderer
component. Note that this component can potentially use a lot of storage space so it is worth
keepingan eye on the statistics information displayedin the inspector window.

Note: This recorder component is only available in Unity version 2018.2 or newer, and is not available in

the trial version of the due to the usage of pre-processor directives. The trail renderer component did not
exist in previous versions of Unity.

Create menu

A ReplayTrailRenderer component can be added viathe menu ‘Tools -> Ultimate Replay -> Make
Selection Replayable -> Replay Trail Renderer. This will cause a ReplayTrailRenderer componentto
be added to the selected game object and may also attach a ReplayObject componentif required.

Inspector

The ReplayTrailRenderer component has some inspector properties which can be used to control
how the line rendererisrecorded. There is also usefulinformation displayed here such as the replay
id used to identify the componentin the replay system. The properties are much the same as the
ReplayLineRenderer component as the same technique is used for both components.

e Replay Identity: The unique ID value used to identify the recorder componentin the replay
system. This value is auto-generated when the componentis added to a game object.

e Replay Object: The unique ID value of the managing ReplayObject componentthatis
responsible for updating this recorder component.

e Observedline Renderer: Areference toa Unity line renderer component which will be
recorded and replayed. Itis recommended thatthe assigned line rendererexists onthe
same game object, althoughiit is not a requirement.

¢ Interpolate: Shouldthe line renderer positions be interpolated during playback. This will
produce smootherresultsif low record rates are used and is highly recommended.

60| Page

Trivial Interactive 2020

Custom Recorder Components

Ultimate Replay 2.0 hasa number of built in recorder components which canrecord and replay
many frequently used Unity components. In some scenarios, it may be the case thata custom
recordercomponentis required because one does not already exist, or you needtorecorda
componentfrom a third-party package. In Ultimate Replay 2.0, we have made it as easy as possible
to create a customrecorder componentand it can be as simple as implementing the
ReplayRecordableBehaviourabstract class. This class has just 2 method which needto be
overridden: OnReplaySerialize and OnReplayDeserialize.

In orderto create a custom recorder component, a basic understanding of how the replay system
works will prove very useful. Essentially, the replay system has a fixed record rate such as 16ms
intervals for 60FPS. The replay system will wait for 16ms to pass and then begina ‘Sample Pass’
which is where all replay objects collect and return data from their observed recorder components.
The replay object will call OnReplaySerialize for all recorder components which is where per
componentdatais serialized into a ReplayState object. The replay system will then verify, tag and
compress the data ready for writing to the associated storage target and repeat until StopRecording
is called.

Playback is much the same as recording exceptthatthe data is sentto the appropriate replay object
which is then responsible for calling OnReplayDeseirlaize on the observed component. The
OnReplayDeserialize can be used to restore the state of the componentorto store the data for
interpolation purposes. The basic principles are:

e OnReplaySerialize is used to record component data which is needed to restore the state at
a later time. For example, the ReplayTransform componentcanrecord position, rotation
and scale data so that the transform can be updated fully during playback. The method will
be called multiple times during recording to create a sequence of state data.

e OnReplayDeserialize is called when the component should restore its state. The correct state
date for the sequence position will be provided so it is justa case of deserializing the data
and restoring the component state. It may also be desirable to store the state data between
frames as fields so that interpolation can be performed via the update method.

Here is an example of a custom recorder component that records and replays the assigned material
of arenderercomponent:

6l|Page

Trivial Interactive 2020

class Example : ReplayRecordableBehaviour
{

public Renderer renderer;
public Material[] materials;

public override void OnReplaySerialize (ReplayState state)

{
bool matechedMaterial = false;
for(int 1 = 0; i < materials.Length; i++)
{
if (renderer.material == materials[i])
{
state.Write (i) ;
matchedMaterial = true;
break;
}
}
if (matchedMaterial == false)
state.Write(-1);
}

public override void OnReplayDeserialize (ReplayState state)

{
int materialIndex = state.ReadInt32();
if(materialIndex == -1)
{
renderer.material = null;
}

else if(materialIndex >= (0 && materialIndex <
materials.Length)
{

renderer.material = materials[materiallIndex];

}

The material is checked against an array of possible materials and an index value is storedinto the
ReplayState objectwhich representsthe assigned material. If the current material does notexistin
the possible materials array then an error value of -1’ is stored in the state objectto reflect this. The
deserialize method then attempts to restore the correct material to the renderer by reading back
this index value. Note that the errorcase is properly handled and will setthe renderer materialto
null.

62| Page
Trivial Interactive 2020

Replay Controls

Ultimate Replay 2.0 includes a simple replay controls Ul just like in the original asset. This Ul is
implemented using the legacy Unity immediate mode GUland is intended for quick testingand
demonstration purposes. If you need asimilar in game Ul then we recommend that you create your
own using your favourite Ul package or asset since the immediate mode GUl is now depreciated.
Here you can see the replay controls Ul in record mode:

The replay controls Ul has 3 different modes which can be used to switch between different statesin
the replay system. Ultimate Replay 2.0 supports an unlimited number of simultaneous record and
replay operations; however, the replay controls can only be used to control a single replay operation
at any giventime. This means that the controls can be used to eitherrecord, replay or remainidle.
The replay state can be changed at any time using the controls in the upperleftcorner and is also

indicated by the selected button:

e Live Mode: Live mode allows gameplay to continue as expected. Allreplay objects have their
components restored gameplay mode and physics and animation systems can control
objects as normal.

e Record Mode: All replay objects are recorded ata fixed rate based upon the recording
interval as specified via the settings window. All active ReplayObject sin the scene will be
recorded toa memory storage target.

e Playback Mode: Playback mode allows you to view the recorded data and see the replay as
it was recorded. All replay objects will be prepared for playback which involves disabling
various game systems such as physics and scripts which could otherwise cause the object to
move out of playback position. The replay system will then proce ed to recreate the
recording by restoring scene snapshots orkey frames.

Record Mode

The replay controls include a record mode which is used to record replay objects in the scene overa
period of time. The record state is indicated by the framing borders being displayed as part of the Ul

63| Page

Trivial Interactive 2020

along with the currentrecord duration in seconds. The replay controls will always store its recorded
data in a memorytarget with an unlimited size meaningthat long recordings are possible.

You can start recording with the replay controls Ul by selectingthe ‘Rec’ mode button which will
begin capturing the scene.

—

Playback Mode

The replay controls also provide a convenient way to view the last recorded segment with full
control via a playback seek control as well as speed and direction controls. The replay controls will
also offerfree cam perspective during playback meaning that you can move the camera around the
scene using navigation keys to view the replay from any perspective.

Speed

Reverse

0:03/ 0:09

e State Controls: As previously mentioned, the state controls allow you to switch between
Live, Record and Playback modes offering full testing abilities.

e Free Cam Hint: The free cam hint is only displayed while in playback mode and indicates that
you are able to move the camera around using the navigation controls. Keyboard and mouse
control hits will also be displayed here.

e Playback Speed: The speedthatthe replay will be played at. The speed sliderallows speeds
between 0-2to be specified where 1is the default playback speed. A value of 0 would cause
the playback to halt whereas a value of 2 would cause playback to run twice as fast. Note
that the GUI slider is limited to 0-2 for ease of use but the replay system accepts much larger
values via code.

e Playback Direction: Used totoggle between forward and reverse playback.

64| Page

Trivial Interactive 2020

e Playback Time: Displays the current playback time value in seconds for the recording (Also
indicated by the seekslider position) along with the total duration of the recordingin
seconds.

e Playback Settings: Used to show/hide the playback options popup containing the speed and
direction controls.

e Playback Slider: The playbackslider indicates the current playback position in relation to the
overall recording. The slidercan also be used to seek to different pointsin the replay by
dragging or clicking along the slider bar. Note that interpolation is not available while
seeking so snappingor jumping may occur when slowly scrubbing.

e Play/Pause: Allows playback to be paused or resumed at any point.

Free Cam Mode

One of the advantages of using a state-based replay systemis that you are able to view the replay
fromany camera angle, or even multiple cameras in successionin order to create a highlights reel or
similar. This is possible because the replayis rendered in real-time using the active camera.

The ReplayControls component makes use of this feature by allowing a free cam mode during
playback which allows youto fly the camera around the scene as a replay is running. While in
playback mode, you will see in the upperright cornerthat ‘Free Cam’ mode is enabled, meaning that
you can manipulate the camera using the following controls:

e W: Move the cameraforward relative to the currentcamera heading.

e S: Move the camera backwards relative to the current cameraheading.

e A:Move the camera leftrelative to the current camera heading.

e D: Move the cameraright relative to the current camera heading.

e RMB +Drag: Pan / tilt the camera angle based upon the mouse movement.

Exiting and re-entering playback mode will cause the free cam to be reset to its initial position which
will be the position of the active rendering camerawhen entering playback mode.

Note: in order to preserve any gameplay cameras in the scene, the replay system will create its own

camera that will be used during free cam mode which will adopt the position and rotation of the active
scene camera. This will give the effect of moving the current scene camera but in actual fact, scene
cameras will be left untouched.

65| Page

Trivial Interactive 2020

Replay Techniques

Replay Animation

Recordingand replaying animated objects is a common use case of Ultimate Replay 2.0 and as a
result we have added supportforreplaying Animator components, as wellas support for IK
animations via an alternative approach.

The ReplayAnimator component can be attached to a game object in orderto record its animations.
You will need to assign the ObservedAnimator property of the ReplayAnimator componenttothe
Animatorthat you wantto record and replay. Afterthat, your animations should be recorded and
replayed seamlessly by the replay system. Take a look at the ReplayAnimator sectionfor more
detail.

Some games may make use of IK animation to position bones via scripts to reach a target pose.
Ultimate Replay 2.0 can also support IK animation, although a differentapproach needsto be used
to setup the object. Essentially, each bone in the object skeleton that you wish to record should have
a ReplayTransform componentattached, and a single managing ReplayObject componentat the
root. If this sounds too complicated then don’t worry, we have created a editor tools to help setup
these replay component properly. The Replay Humanoid Configurator can be usedto add the
necessary replay components. Take alook at the Replay Humanoid Configurator section for more
information.

Replay Ragdolls

Some games may make use of physics-based ragdolls for enemy deaths or similar which can also be
recorded and replayed by Ultimate Replay 2.0. The process of recordinga ragdoll character or similar
is much the same as recording IK animation and requires that each bone in the skeleton hasa
ReplayTransform componentattached. If yourragdoll has a humanoid structure, then setup is made
guite simple using the Replay Humanoid Configurator which automates this process. For generic rigs,
you will need to manually attach the recorder components whichis a little tedious but worthwhile.

These simple rules will ensure that your replay components are placed on the correct objectsin the
ragdoll hierarchy:

1. AReplayObject componentis required onthe veryroot of the ragdoll object. This will
usually be the highestobjectin the hierarchy.

2. AReplayTransform should be addedto every bone inthe hierarchy. An easy way to do this
to setup yourragdoll using the Unity ragdoll window, andthen add a ReplayTransform
componentto every objectin the hierarchy that has a ‘CharacterJoint’ component attached.

3. AnyReplayTransform componentsthatare not attached to the very root of the object
should have their position and rotation options set to record in local space.

Here is an example setup to give you a betteridea (This example assumes that you have already
setup yourragdoll in Unity):

-Root ReplayObject , ReplayTransform (World Space)
--Bone 1 CharacterJoint, Replay Transform (Local Space)
--Bone?2 CharacterJoint, Replay Transform (Local Space)
---Bone 3 CharacterJoint, Replay Transform (Local Space)
------ Bone 4 CharacterJoint, Replay Transform (Local Space)

66 | Page

Trivial Interactive 2020

Afterattaching replay components following the structure above, you can immediately test the
scene to ensure that everythingis working correctly. It may also be worth taking a look at the
included killcam demo scene which usesthe ragdoll replay technique. The demo scene can be found
at ‘Assets/Ultimate Replay 2.0/Demo/Killcam.unity’

Killcams

Killcams are another use case that Ultimate Replay 2.0 fully supports. A killcam is usually used to
replay the last few seconds of the game when a player is killed so that they can see the death from
the point of view of the shooter. If we break down this problem, we can see that the following things
are required in orderto create a workingkillcam system:

e Continuousrecording of the last (n)seconds of gameplay

e The ability to view the replay from different perspectives

e Asceneto playback the recording without outside influences. For example, other playersin
a networked game.

Ultimate Replay 2.0 has supportfor endless continuous recordingwhen usinga
ReplayMemoryTarget asthe storage device. Generally, akillcam will only need to use memory
storage as any old data is no longer relevantand can be discarded. A ReplayMemoryTarget hasa
time value in seconds that can be assigned to which represents the maximum length of recording
that can be stored. This is nota normal limit though as the time value is a negative offset. le. This
time value is used to constrain the recorded data to the last x amount of seconds so that the
smallestamount of memory is used and endless recording is possible without runninginto memory
usage issues.

Note that some games may like to use a killcam butalso have the ability to record complete game
sessions at the same time. Ultimate Replay 2.0 can now supportan unlimited number of
simultaneous replay operations soit is possible to both record in memory forthe in-game killcam,
and stream the entire game session to file or anotherstorage device if required.

Anotherkey aspect of a killcam is that the replay viewpointis from the perspective of the shooter.
This means that you get to view the actions of anotherenemy/playerleading up to the death as if
youwere in their shoes. Luckily, this is something thatis very easy to achieve using Ultimate Replay
2.0 due to the state-based approach used for replays. Ultimate Replay 2.0 renders all replaysin
realtime using the active camera. This camera can be positioned at any location and moved as
requiredin orderto view the replay from any location.

The easiest way to achieve this would be to attach a secondary camerato the enemy character
modelassuming a first person killcam is required. This camera should be setup as a first-person view
for the enemy but will not be activated until you need toview the replay. You will also needto
record the transform of this camera so that the players movements are captured. Then when
entering playback mode, it is simply a case of switching cameras to view the replay fromthe shooter
perspective. This step can be repeated foreach enemy/playerinthe game so that all potential
shooters can be used as the viewing perspective.

One final thing to consider when implementing a killcam is where a replay will be constructed.
Ultimate Replay 2.0 usesthe recorded scene objects to reconstruct the scene which could
potentially cause issues. Forexample: If you have a networked multiplayer game where you send
playerupdates across the network, when you switch to replay mode, other clients may receive the
results of the replay rather than the gameplay. In this scenario, you would need to suspend network

67| Page

Trivial Interactive 2020

updates while the replay is running so that the local scene is not synced to other clients, and also
that otherclients do not affectthe local scene used forthe replay which could cause inaccurate
playback. It is nota majorissue, but somethingto take into account when designing a killcam
system.

Ultimate Replay 2.0 can be used to create ghost vehicles for a racing game and it is now much easier
and better supported thaninthe original asset. A ghostvehicle is usedin racing gamesto show the
playertheir previous best racing line/time, usually via a semi-transparent non-collidable car. To
setup a ghostvehicle system there are a few things to consider:

e Theplayervehicleis usedforrecording

e Usually a different ghost vehicle objectis used for playback

e Theplayer could beat their previous time and the ghost vehicle should display the fastest lap
only

Recording the playervehicle is straight forward and can be achieved with the built-in recorder
components, namely the ReplayTransform component. This would record the vehicles transform
as it drivesaround the track. The problem comes when we need to replay the recording. Usually
with Ultimate Replay 2.0 you could just call BeginPlayback and the replay would run justfine. The
issue though is that the replay would be played back on the player car instead of the ghost vehicle
which is not desirable. This can be resolved quite easily though using identity transferto allow the
ghostvehicle objectto take on the identity of the player car for playback purposes. Take a look at
the identity transfer section for more information.

Usingthe identity transfertechnique, we can allow the player car to record the information as it
drives around the track, and then replay that information onto a different ghost vehicle car. This
means that the playercar is not taken over by the replay andis free to drive another lap. It also
meansthat a completely different game object usually with a different visualappearance can be
used forthe ghost vehicle which is an ideal solution.

Anotherthingto consider when implementinga ghost vehicle systemis that the player could beat
their previous lap and the ghost vehicle would need to use this latest replay to reflect this. This
means that we needto record every lap that the player car completes, justin case they posted a
fastertime. This is quite simple to do using the followingrules:

1. Startrecording the playercar whenthey cross the start/finish line and wait for the lap to
complete.
2. Checkif we have any previous times posted.

a. Ifyes,thenwe check the newly posted lap time to see if it was fasterand store the
recordingif so. The recording can safely be discarded if the time was not a new
record as a previous recording will exist.

b. Ifno,thenwe keepa reference tothe storage target that contains the recording
and start recording the player car again using a new recording target.

3. Create aghostvehicle usingthe identify transfer process and replay the saved storage
target which contains the fastest lap time.
4. Loop back to step 2 or until the player quits the game.

68| Page

Trivial Interactive 2020

Replay Statistics

Ultimate Replay 2.0 uses a state-based approach and needs to store datafor each recorder
componentof every ReplayObject in the scenein orderfor replaysto be captured. On top of this,
snapshot frames are captured in quick succession, often at over 16 frames persecond which can
resultin quite a bit of data to store. Ultimate Replay 2.0 features some highly effective lossless
compression techniquesto keep that figure low butyou can also save storage space ona per
component basis. Many recorder components such as ReplayTransform have inspector properties
which control which data is recorded and how accurately. By tuning these componentstoonly
record whatis needed, you will be able to reduce the overall storage requirements foryourreplays.

Itis important to note that saving a couple of bytes percomponent may not seem like much, but at
over 16FPS and many recorder componentsinthe scene, it doesin fact add up to make quite a
difference tothe overallsize. You will notice that any component deriving from ReplayBehaviour
will display usefulstatsin the inspector window indicating how much data is generated pe raverage
sample. This figure is essentially the amount of data you can expectto be produced by the
componentforeveryrecording sample prior to compression techniques.

v « [Replay Transform (Script) o
Script ReplayTransform o]
Replay Identity 23400
Replay Object 34431 (Cube)

Replay Position KYZ [of Local [Lerpl® LP[]
Replay Rotation HYZ [of Local [] Lerpls LP[]
Beplay Scale Ll 120] Lerpl L pl |

I:;.';l This replay component generates '20' Bytes per sample on average

Note: Some recorder components may only be able to provide accurate data statistics while in play mode.
An example would be the ReplayAnimator component which displays a sample size of ‘0’ while the game is
not running, but displays accurate statistics in play mode.

Whenyou change the properties of the recorder components, you will see that the statistics data
updatesin real time to give youimmediate feedback on the storage requirementsforthe
component. Thisis highly usefulto fine tune a recorder component for playback accuracy vs storage
size.

Storage Statistics

Percomponent statistics are usefulto fine tune recorder components, but it does not give an overall
idea of the amount of actual storage space required by all replay objectsin the scene. Ultimate
Replay 2.0 addresses thisissue but gathering statistics from all active storage targetsto give a single
total usage value in real time. There is a dedicated componentto display this information as Ul text
but an APlis also available sothat you can use that data in any way you need.

The ReplayStatistics component can be attached to any game objectin the scene and will display the
realtime total storage value used by all storage targets. You will see that value change as recording
operations are updated and new datais written to a storage device. The componentcan be added to
a game object by going to ‘Add Component -> Scripts -> Ultimate Replay -> Replay Statistics’.

69| Page

Trivial Interactive 2020

As mentioned previously, an APl s also available to access this data via script if required. The
‘UltimateReplay.Statistics’ namespace contains methods to access this information such as:

ReplayStorageTargetStatistics.CalculateReplayMemoryUsage () ;

This method s used by the ReplayStatistics component and will return an integervalue representing
the total amount of bytes used by all active storage targets combined. Any storage target that exists
in memory will be included in the calculation as the constructoris used to register for statistics. Dead
storage targets are not included and by setting all referencesto astorage target to ‘null’, the storage
target will no longer affect the calculation. In the same namespace, thereis also the useful
ReplayStatisticsUtil type which contains many helper methods to convert a byte value to the largest
possible unit such as ‘KB’, as well as get the string representation of the unit.

70| Page
Trivial Interactive 2020

Replay Humanoid Configurator

The replay humanoid configuration is used to setup humanoid characters for bone recording. Bone
recording may be required | orderto record non-standard animation techniques like inverse
kinematics which are not supported by the Animator. You can also use this approach to record
ragdolls or as an alternative to the ReplayAnimator component.

Essentially in orderfor this technique to work correctly, a number of ReplayTransform components
needtobe addedto each bone transformin the object hierarchy along with a single managing
ReplayObject componentonthe root. Doing this manually would be time consuming and possibly
error prone sowe have created a simple editor tool to automate the process to make things easier.

The Replay Humanoid configurator window can be opened by goingto ‘Tools -> Ultimate Replay ->
Setup -> Replay Humanoid’. This will openthe setup window which operates onthe currently
selected game object.

Note: The selected game object must have an Animator component attached with a suitable humanoid
avatar assigned. If the selected object is not suitable, then the setup window will display a warning to
indicate this.

o
IIl

UltimateReplay | -

Replay Humanoid Configurator

Target Object: RPG-Character o]
» Replay Components (0)
Replay Components: 1]
¥ Root Transform
Replay Position HYZ o Local | Lerpls LP[]
Replay Rotation HYZ [Local | Lerpls® LP[]
Replay Scale Xy zQd Lerp[] LP[]

':_';' This transform setup will be applied to the root object 'RPG-Character'

¥ Bone Transforms

Replay Position HYZ & Local o Lerpls® LP[]
Replay Rotation HYZ & Local W Lerp s LP[]
Replay Scale XYLz Lerp] PO

(1% This transfarm setup will be applied to all bones in the hierarchy. Itis
“2 recammended that lacal values are racorded for bast results,

Apply Root Transform: 4
Apply Bone Transforms

| Strip Components H Apply Components

e Target Object: This field displays information about the current selected object sothatyou
know which object will be configured by the setup tool.

e Replay Components: This section will display a collection of replay components which
already exist on the selected object. Note that components attached to child objects will
also be listed here as well as ReplayObject components. If one or more components exist,
thenyou can use the ‘Strip Components’ button to remove them so that you start the setup
with a clean object.

e Root Transform: This section displays ReplayTransform information which will be applied to
the root object. Inthis case, the ‘RPG-Character’ object will receive a ReplayTransform
component with identical properties when the ‘Apply Compontents’ buttonis clicked. The

71| Page
Trivial Interactive 2020

root transform should almost always use world space forrecording position and rotation
values.

e Bone Transform: This section displays ReplayTransform information which will be applied to
every selected bone of the humanoid skeleton. This will allow the movement of each bone
to be recorded and replayed, allowing for animation and physics movements to be recorded.
Bone transforms should almost always use local space forrecording position and rotation
elements of the transform.

e Apply Root Transform: When enabled, the root transform information specified in the ‘Root
Transform’ section will be applied. If this option is unchecked, the root object will not
receive a ReplayTransform component.

e Apply Bone Transforms: This section contains a list of bonesthat should be recorded by the
replay system. Each bone is named as per the avatar description and can be selected or
deselected to specify whether replay components should be applied to that particular bone.
By default, all bones are enabled and will receive replay components.

@
4
O » X

UltimateReplay |

Replay Humanoid Configuratar

Target Object: RPG-Character
> Replay Components {(0)
Replay Components; 1]
¥ Root Transform
Bone Transforms
Apply Root Transform: ¥

¥ Apply Bone Transforms
Hips B_Pelvis (Transform) o4
LeftUpperLeg B_L_Thigh (Transform) o
RightUpperLeg B_R_Thigh (Transform) oM
LeftLowerlLeg B_L_Calf (Transform) o [
RightLowerlLeg B_R_Calf (Transform) [l |
LeftFoot B_L_Foot (Transform) o
RightFoot B_R_Foot (Transform) o
Spine B_Spine (Transform) o
Chest B_Spinel (Transform) o
Neck B_Neck (Transform) o
Head B_Head (Transform) o [
LeftShoulder B_L_Clavicle (Transform) oM
RightShoulder B_R_Clavicle (Transform) o v

Once you are happy with your root and bone transforms, and have selected the bones that you want
to be recorded, you can then hit the ‘Apply Components’ button. This will apply the necessary replay
componentstothe appropriate bonesin the hierarchy using the properties specified. You should
then have a fully recordable humanoid character that supports standard animation, IK animation,
ragdolls and other physics-based bone manipulation.

72| Page

Trivial Interactive 2020

Integration

This section will cover common integration techniques that can be usedto betterincorporate
Ultimate Replay 2.0 into your game project.

Pooling Support

Ultimate Replay 2.0 is able to support dynamic prefab instantiation and destruction duringrecording
meaning that game objects can be added and removed during recording and playback will replicate
this behaviour. In orderto do this, Ultimate Replay 2.0 will Instantiate and Destroy prefabinstances
as required using the Unity API. This may not be desirable if your game implements a pooling
solution as you may like to have full control overthe creation and destruction of objects. The good
news is that Ultimate Replay 2.0 was designed with pooling in mind and it is possible to completely
take overthis process.

Ultimate Replay 2.0 has 2 static delegates which can be used to add Instantiate and Destroy
listeners. These listeners will then be invoked every time Ultimate Replay 2.0 needs to instantiate or
destroy a game objectin orderto achieve an accurate playback state. These delegates are
OnReplaylnstantiate and OnReplayDestroy and can be found in the UltimateReplay type. You can
add listeners as shown below:

C# Code

1 class Example : Monobehaviour

2 |

3 void Start ()

4 {

5 UltimateReplay.OnReplayInstantiate = CreateObject;
6 UltimateReplay.OnReplayDestroy = DestroyObject;

7 }

8 GameObject CreateObject (GameObject prefab, Vector3 pos,
9 Quaternion rot)

10 {

11 // Create instance from pool...

12 }

13

14 void DestroyObject (GameObject target)

15 {

16 // Remove instance from pool...

17 }

10 }

Note: If an instantiate or destroy handler fails by returning null or throwing an exception, Ultimate Replay
2.0 will default to the standard approach of using Instantiate and Destroy to avoid playback issues.

73| Page
Trivial Interactive 2020

Howdoll...

Get the replay duration?
Once you have recorded a replay to a storage device, you can access the overall duration of the

recording using the Duration property of the storage target. The duration will be set to zeroif no
data has beenrecorded.

C# Code

1 ReplayStorageTarget target = new ReplayMemoryTarget () ;
2

3 // Get the recording duration is seconds

A float duration = target.Duration;

Set playback time?

You can seek to particular a particular time stamp of a recording during playback. There are 2
methods of the ReplayManager which can be used to achieve this.

C# Code

1 ReplayHandle handle = ReplayManager.BeginPlayback() ;

2

3 | // Seek to the 2 second mark

4, ReplayManager.SetPlaybackTime (handle, 2f, PlaybackOrigin.Start);

This method accepts a replay handle which should be a valid playback handle returned by
BeginPlayback. The second parameteris the time stamp value that you wantto seek toin seconds.
Note that this value is relative to the specified PlaybackOrigin. The final parameteris the seek origin
which indicates where the specified time value should be offsetfrom. This works in a similar way to
file system seekingand allows you to seekrelative to the start of the recording, the current
recording position and the end or the recording. Negative time values are accepted since seeking
relative to the end of the recording requires a negative time offset.

C# Code

1 ReplayHandle handle = ReplayManager.BeginPlayback() ;
2

3 | // Seek to the middle of the recording

4 ReplayManager.SetPlaybackTimeNormalized(handle, 0.5f,
5 PlaybackOrigin.Start) ;

This method also allows you to seek though a recording during playback but only accepts normalized
values. The first and last parameters are the same as above butthe second parameteris now a
normalized value between 0and 1. When a playback origin of Start is specified, an offset value of 0
would indicate the start of the replay and a value of 1 would represent the end of the recording.

74| Page

Trivial Interactive 2020

Replay in reverse?

The replay managerhas a method called SetPlaybackDirection which can be used to change setthe
direction that a replay will play.

C# Code

ReplayHandle handle = ReplayManager.BeginPlayback() ;

// Change playback direction to reverse
ReplayManager.SetPlaybackDirection(handle,
PlaybackDirection.Backward) ;

u b WN -

The method accepts a playback handle which should be a valid replay handle returned by
BeginPlayback and a PlaybackDirection value which can either be Forward or Backward.

Replay in slow motion?

The playback speedis determined by the time scale value for the replay. By default, this time scale is
setto a value of 1 which represents normal playback speed. A value of 0.5 would cause playback to
run at half the speed. You can setthe time scale value fora replay playback operation using the
replay manager method called SetPlaybackTimeScale. Note that you can also enabled reverse
playback by passing a negative value.

C# Code

1 ReplayHandle handle = ReplayManager.BeginPlayback() ;
2

3 | // Change playback speed to 1/2

4 | ReplayManager.SetPlaybackTimeScale (handle,) ;

The method accepts a playback handle which should be a valid replay handle returned by
BeginPlayback and a float value which represents the time scale value.

Quickly test my scene?

You can use the built in ReplayControls componentin orderto quickly testrecordingand playback
to make sure it is working as expected. The replay controls can be added to any game objectin the
scene and whenin play mode will display a Ul that can be used to control the recording and playback
of replays. All of the ReplayManager interactionis handled by the replay controls so it is a quick and
easy way totest outyour scene. Replay controls can be easily added tothe scene by going to ‘Tools -
> Ultimate Replay 2.0 -> Replay Controls’.

Create a killcam?

A killcam is can be implemented quite easily using Ultimate Replay 2.0, especially with the Rolling
memory target storage capabilities. We have created a dedicated section of the user guide which
coversthe various techniques used by killcam replay systems and how they can be implemented. We
have also included a simple demo scene which shows how a basic killcam can be implemented. You
can find the demo scene at ‘Assets/Ultimate Replay 2.0/Demo/Killcam.unity’.

75| Page

Trivial Interactive 2020

Create a ghost vehicle?

A ghostvehicle is a common use case for Ultimate Replay 2.0 and we have created a dedicated
section of the user guide to coverthe necessary techniques to create a successfulghost vehicle
replay system. We have also included a simple ghost vehicle demo scene with the asset which can be
found at ‘Assets/Ultimate Replay 2.0/Demo/GhostVehicle.unity’.

Having difficulty finding information about a particular aspect of Ultimate Replay 2.0? Contact us via
the forum or by email and we can add your question to this section to help other users. Contact

details are also included at the end of this document.

76| Page
Trivial Interactive 2020

Reporta Bug

At Trivial Interactive we test our assets thoroughly to ensure that they are fit for purpose and ready
for usein gamesbut it is ofteninevitable thata bug may sneakinto a release version and only
expose its self undera strict set of conditions.

If you feelyou have exposed abug within the asset and want to getit fixed then please let us know
and we will do ourbestto resolve it. We would ask that you describe the scenario in which the bug
occurs along with instructions on how to reproduce the bug so that we have the best possible
chance of resolving the issue and releasing a patch update.

http://trivialinteractive.co.uk/bug-report/

Request a feature

Ultimate Replay was designed as a complete replay system, however if you feelthat it should
contain a feature thatis not currently incorporated thenyou can request to have it added into the
nextrelease. If there isenough demand for a specific feature the n we will do our bestto add it into a
future version. Please note, requested features should fall within the scope of the assetand
unrelated or overreaching features willnot be added.

http://trivialinteractive.co.uk/feature-request/

Contact Us

Feelfree to contact usif you are havingtrouble with the assetand need assistance. Contact can
either be made by the contact options onthe assetstore or via the link below.

Please attemptto describe the problem as bestyou can so we can fully understand the issue you are
facing and help you come to a resolution. Help us to help you :-)

http://trivialinteractive.co.uk/contact-us/

77| Page

Trivial Interactive 2020

http://trivialinteractive.co.uk/bug-report/
http://trivialinteractive.co.uk/feature-request/
http://trivialinteractive.co.uk/contact-us/

