
1 | P a g e  
Trivial Interactive 2020 

Ultimate 
Replay 2.0 

 
A simple and effective state-based replay system for Unity 

 

Trivial Interactive 

Version 2.1.x 

Ultimate Replay 2.0 is a complete state-based replay system ideally suited to kill cams or action 

replay applications. Due to the state-based nature of the system, it is possible to view replays from 

any angle or even fly around the scene as playback occurs. 

Recommended Uses: 
• Action replays in sports of similar games. 

• Kill cams / Death cams in shooting games (Demo included). 

• Ghost vehicles in racing games (Demo included). 

• Multiple angle replays where the same recording is viewed from a number of different 

vantage points in succession. 

• Many more uses… 

Features 
• Quick and easy setup / integration into existing projects. 

• Simple API for replay and playback control means that very little scripting knowledge is 

required. 

• Record and replay as many different objects as you want simultaneously.  

• Uses a state-based replay system meaning that you can view playback from different camera 

angles or even fly around as playback occurs. 

• Full support for instantiation or destruction of objects during recording.  

• Fully interpolated playback means that you can record at ultra-low frame rates (5fps and 

less) and retain smooth and accurate replays. 

• Supports playback at any speed from ultra-slow motion to 2 or 4x. 

• Supports reverse playback which can be used to produce a rewind effect.  

• Playback can be paused and resumed at a later date. 

• Full playback seek support allows you to jump to any point in a recording. 

User 

Guide 



2 | P a g e  
Trivial Interactive 2020 

• Full control over recording frame rate to make sure you capture the best quality recording at 

the smallest memory cost. 

• Recording an object is as simple as attaching a replay component. 

• Built-in support for recording transform, audio, particles, animation, and more. 

• Easily create your own component recorders to expand the capabilities.  

• Memory recording can be setup as continuous or as a rolling buffer configuration. 

• File support means that you can create persistent replays for later game sessions.  

• Highly optimized file format allows for lengthy replays with minimal file size and high 

performance streaming. 

• ReplayVars allow script variables to be recorded simply by adding an attribute. 

• Get useful hints about the storage space requirements for all replay objects. 

• Includes example GUI controls for playback manipulation. 

• Comprehensive .chm documentation of the API for quick and easy reference.  

• Fully commented C# source code included.  

  



3 | P a g e  
Trivial Interactive 2020 

Contents 
Upgrade Guide ............................................................................................................................. 7 

Replay Manager........................................................................................................................ 7 

Replay Scene ............................................................................................................................ 7 

Replay Storage Targets.............................................................................................................. 7 

Replay Behaviour ...................................................................................................................... 8 

Quick Start ................................................................................................................................... 9 

Replay Considerations................................................................................................................. 13 

Replay Concepts ......................................................................................................................... 14 

Replay Manager...................................................................................................................... 14 

Replay Handle ........................................................................................................................ 14 

Replay Identity ....................................................................................................................... 14 

Replay State ........................................................................................................................... 14 

ReplaySnapshot ...................................................................................................................... 15 

Replay Scene .......................................................................................................................... 15 

Replay Storage Target ............................................................................................................. 15 

Replay Recorder Component ................................................................................................... 15 

Replay a Game Object................................................................................................................. 16 

Game Object Hierarchy ........................................................................................................... 16 

Main API ................................................................................................................................ 18 

BeginRecording ................................................................................................................... 18 

StopRecording..................................................................................................................... 18 

IsRecording ......................................................................................................................... 19 

SetPlaybackTime ................................................................................................................. 19 

SetPlaybackTimeNormalized ................................................................................................ 20 

SetPlaybackDirection ........................................................................................................... 20 

SetPlaybackTimeScale.......................................................................................................... 21 

GetPlaybackTime................................................................................................................. 21 

BeginPlaybackFrame............................................................................................................ 21 

BeginPlayback ..................................................................................................................... 22 

StopPlayback....................................................................................................................... 23 

IsReplaying.......................................................................................................................... 23 

AddPlaybackEndListener ...................................................................................................... 23 

Replay Settings ........................................................................................................................... 24 

Replay Scene .............................................................................................................................. 28 



4 | P a g e  
Trivial Interactive 2020 

Replay Scene Mode................................................................................................................. 28 

Replay Preparers..................................................................................................................... 28 

Custom Replay Preparer ...................................................................................................... 29 

Replay Prefabs............................................................................................................................ 31 

Registering Replay Prefabs ...................................................................................................... 31 

Register via script ................................................................................................................ 32 

Instantiating Replay Prefabs .................................................................................................... 33 

Using Replay Scene.............................................................................................................. 33 

Using Replay Manager ......................................................................................................... 33 

Destroying Replay Prefabs ....................................................................................................... 34 

Replay Storage Target ................................................................................................................. 37 

Replay Memory Target ............................................................................................................ 37 

Replay Stream Target .............................................................................................................. 38 

Replay File Target ................................................................................................................... 38 

Custom Replay Storage Target ................................................................................................. 39 

Replay Object ............................................................................................................................. 40 

Inspector ................................................................................................................................ 40 

Identity Transfer ..................................................................................................................... 40 

Replay Behaviour........................................................................................................................ 42 

Replay Messages .................................................................................................................... 42 

OnReplayStart ..................................................................................................................... 42 

OnReplayEnd ...................................................................................................................... 42 

OnReplayPlayPause ............................................................................................................. 42 

OnReplayReset.................................................................................................................... 43 

OnReplayCapture ................................................................................................................ 43 

OnReplayUpdate ................................................................................................................. 43 

OnReplayEvent.................................................................................................................... 43 

OnReplaySpawned .............................................................................................................. 43 

Replay Events ......................................................................................................................... 44 

Replay Methods...................................................................................................................... 45 

Replay Variables ..................................................................................................................... 46 

Recorder Components ................................................................................................................ 48 

Replay Transform.................................................................................................................... 48 

Create Menu ....................................................................................................................... 48 

Inspector ............................................................................................................................ 48 

Replay Enabled State .............................................................................................................. 50 



5 | P a g e  
Trivial Interactive 2020 

Create menu ....................................................................................................................... 50 

Inspector ............................................................................................................................ 50 

Replay Component Enabled State ............................................................................................ 50 

Create menu ....................................................................................................................... 50 

Inspector ............................................................................................................................ 50 

Replay Animator ..................................................................................................................... 52 

Create menu ....................................................................................................................... 52 

Inspector ............................................................................................................................ 52 

Replay Particle System ............................................................................................................ 54 

Create menu ....................................................................................................................... 54 

Inspector ............................................................................................................................ 54 

Replay Audio .......................................................................................................................... 54 

Create menu ....................................................................................................................... 54 

Inspector ............................................................................................................................ 54 

Replay Material Change .......................................................................................................... 56 

Create menu ....................................................................................................................... 56 

Inspector ............................................................................................................................ 56 

Replay Material ...................................................................................................................... 57 

Create menu ....................................................................................................................... 57 

Inspector ............................................................................................................................ 57 

Replay Line Renderer .............................................................................................................. 59 

Create menu ....................................................................................................................... 59 

Inspector ............................................................................................................................ 59 

Replay Trail Renderer (Unity 2018.2 or newer) ......................................................................... 60 

Create menu ....................................................................................................................... 60 

Inspector ............................................................................................................................ 60 

Custom Recorder Components ................................................................................................ 61 

Replay Controls .......................................................................................................................... 63 

Record Mode.......................................................................................................................... 63 

Playback Mode ....................................................................................................................... 64 

Free Cam Mode................................................................................................................... 65 

Replay Techniques ...................................................................................................................... 66 

Replay Animation.................................................................................................................... 66 

Replay Ragdolls....................................................................................................................... 66 

Killcams .................................................................................................................................. 67 

Replay Statistics.......................................................................................................................... 69 



6 | P a g e  
Trivial Interactive 2020 

Storage Statistics .................................................................................................................... 69 

Replay Humanoid Configurator.................................................................................................... 71 

Integration ................................................................................................................................. 73 

Pooling Support ...................................................................................................................... 73 

How do I… .................................................................................................................................. 74 

Get the replay duration? ......................................................................................................... 74 

Set playback time? .................................................................................................................. 74 

Replay in reverse?................................................................................................................... 75 

Replay in slow motion? ........................................................................................................... 75 

Quickly test my scene? ............................................................................................................ 75 

Create a killcam? .................................................................................................................... 75 

Create a ghost vehicle? ........................................................................................................... 76 

 

  



7 | P a g e  
Trivial Interactive 2020 

Upgrade Guide 
If you are upgrading from the original Ultimate Replay asset, then we would like to thank you for you 

continued support and recommend that you take a look at the following section to see how the 

asset has evolved. We have designed Ultimate Replay 2.0 from the ground up in order to support 

many requested features and also offer a more optimized and capable asset. With that said, many of 

the original concepts of Ultimate Replay still exist such as replay components, Replay objects etc. but 

you may notice some changes. 

Replay Manager 
The ReplayManager  was a core concept in the original asset and indeed it still is the heart of the 

asset although in a slightly different form. Previously, the ReplayManager  was implemented as a 

MonoBehaviour component which needed to be added to a scene object in order to work correctly. 

In version 2.0, the ReplayManager  is now a completely static API and any required scene 

components will be created as required automatically. Most of the original ReplayManager  methods 

still exist in some form, although now they either accept or return a ReplayHandle argument which is 

used to support an unlimited number of simultaneous replay operations. There is more information 

later in the document but essentially begin operation such as BeginRecording and BeginPlayback will 

return a ReplayHandle. You will need to store this object and pass it as an identifier every time you 

want to change the state of a replay operation or query state information.  

In the original asset, the RelayManager  also contained the global replay settings such as record FPS 

and replay prefabs collection and more. This has now been moved into a global asset which is 

accessible via the menu ‘Tools -> Ultimate Replay -> Settings’. 

Replay Scene 
A new concept in Ultimate Replay 2.0 is the ReplayScene  which is used to specify a collection of 

ReplayObject  s which should be associated with a record or replay operation. In the  original asset, 

all ReplayObject  s in the active scene would be used in recording and playback which was fine since 

it was only possible to have one replay operation running at any given time. In version 2.0, you will 

now have the option of providing a ReplayScene  instance to specify which ReplayObject  s you want 

to be affected. There are many static construction methods for the ReplayScene  class which makes 

it easy to get all ReplayObject  s in a specific scene or you can manually add ReplayObject  s if 

required. If you do not provide a ReplayScene  instance when calling BeginRecording or 

BeginPlayback, then all ReplayObject    instances in the active scene will be used. Take a look at the 

Replay Scene section for more information. 

Replay Storage Targets 
The concept of replay storage targets still exist in Ultimate Replay 2.0 however this time they are 

implemented a little different. In the original asset, storage targets were implemented as behaviours 

and as a result they had to be attached to a game object, usually next to the ReplayManager  

component. In version 2.0, the storage targets are now just normal C# objects and can be created 

using the constructor and static helper methods in some cases. This does mean that some storage 

targets such as the ReplayFileTarget will need to be manually disposed when no longer needed but it 

allows for far greater control.  



8 | P a g e  
Trivial Interactive 2020 

Replay Behaviour 
Another notable change is to the ReplayBehaviour  component. Previously, this component was 

used to create custom replay components as well as record events and declare replay variables. In 

version 2.0, the ReplayBehaviour  still exists although some of its functionality has been refactored 

out. The OnReplaySerialize and OnReplayDeserialize methods that you may already be accustomed 

to no longer belong the ReplayBehaviour  class. Instead they have been moved out to a new type 

called ReplayRecordableBehaviour. The main reason for this change is so that users can inherit from 

ReplayBehaviour  without needing to implement the serialize methods. Creating a ReplayBehaviour  

script can be useful for querying the record or replay state, recording variables, events, methods and 

more as well as receiving various replay events like OnPlaybackStart. 

  



9 | P a g e  
Trivial Interactive 2020 

Quick Start 
This section will walk you through the bare minimum setup required in order to get a simple replay 

system up and running as quick as possible. The walkthrough will assume a basic understanding of 

core replay concepts such as the ReplayManager and RecorderComponents. If you are unfamiliar 

with these terms then we highly recommend taking a look at the ReplayConcepts section as a 

minimum to get a basic understanding. 

 

This guide will assume that you have successfully imported the Ultimate Replay 2.0 asset into your 

Unity project and that you are starting with a blank scene ‘File -> New Scene’. If you have trouble 

importing the asset for any reason then please contact us for support. Contact information can be 

found at the end of this document. 

1. First of all, we will need a game object which will be recorded and replayed by the replay 

system. This should be a moving object (static objects work fine but will make for a dull 

replay) so this example will use a simple cube object with a physics rigid body and collider 

attached. 

First, we will add a cube object to the scene by going to ‘GameObject -> 3D Object -> Cube’ 

and position the object at (0, 5, 0) in the scene. We will also set the rotation of the cube to 

(50, 60, 0). The purpose of this is that the cube will tumble and roll when colliding with the 

ground plane making for a more interesting replay. 

 

 

With the cube object still selected, add a RigidBody component by going to ‘Add Component 

-> Physics -> Rigidbody’. This will allow the cube to fall with gravity so that we have a moving 

object to record. 

2. The next step is to make the object replayable by adding a recorder component. Ultimate 

Replay 2.0 offers a number of built-in recorder components which can be used to replay 

different elements of an object. For this example, we will be interested in using the 

Note: The completed demo scene which will be created by following the guide below is included in the 

asset for convenience. You can find this scene at the path ‘Assets/Ultimate Replay 

2.0/Demo/QuickStart.unity’ 



10 | P a g e  
Trivial Interactive 2020 

ReplayTransform   component which is used to record and replay the Unity transform 

component. 

 

Add a ReplayTransform   component to the cube object by going to ‘Tools -> Ultimate Replay 

-> Make Selection Replayable -> Replay Transform’. This will cause a ReplayTransform   and 

ReplayObject   component to be attached to our cube object: 

 

 
3. Once we have setup the cube object, we will now add a ground plane to the scene so that 

the cube has something to collide with. Go to ‘GameObject -> 3D Object -> Plane’ to create a 

ground plane. Make sure the plane position is set to (0, 0, 0). 

 

4. That is all the setup done. We could now start recording using the Ultimate Replay API and 

we would capture a valid replay of the cube falling and tumbling as it contacts the ground 

plane. There is however an easier way to test the scene without the need for scripting. The 

ReplayControls  allow you to record and view replays using a basic UI interface. We will 

make use the ReplayControls  component in this example as it is the easiest way to test a 

scene. 

Add a ReplayControls  component by going to ‘Tools -> Ultimate Replay -> ReplayControls ’. 

This will add a new game object to the scene named ‘ReplayControls’ which has a 

ReplayControls  script component attached to it. This script component will display the 

replay UI using the Unity legacy immediate mode GUI. 

5. We can now test our replay scene by entering play mode in the editor to start the game. The 

ReplayControls  will start recording automatically as soon as the game starts and the cube 



11 | P a g e  
Trivial Interactive 2020 

will fall to the ground and tumble. Once the cube has settled, click the ‘Play’ button of the 

ReplayControls  UI in the top left corner to enter playback mode. You will see that the replay 

begins and the cubes actions are replayed smoothly and accurately. You can also use the 

playback slider to jump to different positions in the replay as well as the settings menu 

which contains options for playback speed and direction. 

 

 

 

Congratulations! You have successfully setup your first replay system using Ultimate Replay 2.0 and 

can now move on to bigger and better things. At this stage it may be worth taking a look at the 

following sections to get a better understanding of the asset and how it works: 

• Replay Considerations – There are a few things to consider when using Ultimate Replay 2.0 

in your game. This section will highlight things that you should be aware of.  

• Replay Concepts – Learn about the key concepts used by Ultimate Replay 2.0 

• Replay a Game Object – Learn how to record and replay a game object in depth. 

• Replay Manager – Learn more about the heart of the replay system. 

• Replay Prefabs – Need to instantiate or destroy objects in your game? This section will tell 

you how it can be achieved. 

• Replay Recorder Components – Take a look in detail at the built-in recorder components 

offered by Ultimate Replay 2.0. Also learn how you could create your own recorder 

components. 

There are also a number of demo scenes included with the asset which may be worth taking a look 

at. All demo scenes are located inside the demo folder at ‘Assets/Ultimate Replay 2.0/Demo’:  

• CubeTest – A basic demo scene that spawns a large amount of physics cubes over a period 

of a few seconds. A useful demo if you want to instantiate or destroy recorded game 

objects. 

• ReplayGhostVehicle – This demo shows how a ghost vehicle in a racing game could be 

implemented. This demo uses more advanced techniques like multiple simultaneous record 

and replay operations, replay identity transfer and multi storage management. 

Note: While in playback mode, you can use the free-cam controls of WASD + RMB to fly the camera 

around the scene as the replay is running. 



12 | P a g e  
Trivial Interactive 2020 

• ReplayKillcam – Demonstrates how a first person killcam could be implemented in a 

multiplayer game. This demo features ragdoll, particle, audio recording and more. It also 

demonstrates how a replay can be viewed from the other players perspective (as the 

shooter) for a true killcam point of view. 

Take a look at the How do i? section which will answer common questions about the asset. Can’t 

find the answer to a question? Feel free to contact us and we could add your questions along with 

the answer to the documentation for all to benefit (Contact details at the end of this document).  

  



13 | P a g e  
Trivial Interactive 2020 

Replay Considerations 
Ultimate Replay 2.0 uses a state-based storage technique to record game data at fixed intervals as 

specified by the user. These data samples are known as snapshots and can accurately describe the 

state of a scene at a given time offset known as the time stamp. Ultimate Replay 2.0 uses these 

snapshots to recreate the scene during playback using a slideshow effect to show these states 

quickly in order to give the illusion of seamless animation. There are a few things to consider when 

implementing Ultimate Replay 2.0 into your game project: 

• Replays are state-based: Ultimate Replay 2.0 uses a state-based approach to record and 

replay the scene. This means that a number of snapshots will be captured per second during 

recording which contain enough state data to be able to recreate the scene at a later time. 

As a result, there are a few things to consider:  

o Replays are created by restoring these snapshots in quick succession in order to 

create a smooth playback sequence from a series of snapshots.  

o It is not possible to store recordings as popular video formats such as MP4 because 

the screen pixel data is simply not captured.  

o Replays are rendered in realtime by the active camera allowing you to switch 

cameras during playback, add or remove post processing effects during, create a 

highlight reel with multiple camera angles and more. 

• Scripts don’t run during playback: In order for the replay system to accurately recreate the 

scene as it was recorded, scripts may be disabled so that they cannot move or otherwise 

manipulate objects during playback which would cause inaccurate results. Only scripts 

attached to a replay object will be disabled so this will not affect standalone game systems 

such as game managers which are not repayable. Scripts will be enabled and disabled 

automatically by the replay system via the active replay preparer. Note that you can also 

disable or modify this behaviour if required by creating a custom replay preparer script. See 

the Replay Preparers section for more information. Note that scripts deriving from 

ReplayBehaviour  are treated specially and will be allowed to run during playback. 

• Physics components are inactive during playback: Physics components will also be disabled 

during playback mode to prevent inaccurate replays. The reason for this is that much like 

scripts, physics components can cause objects to be moved during playback as a result of 

rigid body updates or collision resolution. This would cause playback to become inaccurate 

so the components are disabled or deactivated using the active replay preparer.  

• Storage targets cannot be used in multiple operations simultaneously: If you attempt to 

start more than one record or replay operation using the same storage target, you will 

receive an exception as this behaviour is not supported. By design, storage targets can only 

be in write or read mode at any given time. Even then, only a single replay operation can 

access the target to avoid many seek operations which could cause potential performance 

issues, or worse, multiple write operations which could corrupt the data stream.  

  



14 | P a g e  
Trivial Interactive 2020 

Replay Concepts 
This section will cover some of the essential concepts used by Ultimate Replay 2.0 and how they are 

used to affect recording and replay behaviour. 

Ultimate Replay 2.0 is a state-based replay system meaning that the scene is sampled multiple times 

during recording to create a series of snapshots. These snapshots contain the necessary state data of 

all ReplayObject   s in the scene such as position and rotation which are used during playback to 

reconstruct the scene exactly how it was during recording. By reconstructing these snapshots in 

order very quickly, it is possible to create the illusion of a seamless replay, a bit like a flipbook 

animation. This state-based approach has a few benefits over traditional screen recording 

techniques: 

1. The replay can be viewed from different angles or cameras since the replays are actually 

rendered as they are running. You can also move the camera during playback and apply new 

post processing effects to change the appearance of a replay if required. 

2. The state data recorded per scene sample is actually a very small amount of data when 

compared with screen recording techniques where the screen pixels need to be stored. This 

means that memory usage and replay file sizes can be very small allowing for long and 

complex replays to be recorded, especially with the compression techniques offered by 

Ultimate Replay 2.0. 

Replay Manager 
The replay manager is the heart of the replay system and is main interface used to interact with 

Ultimate Replay in your game. It contains all the methods to start, stop, modify and query replay 

operations and will generally be the only point of contact of the Ultimate Replay 2.0 API unless you 

are an advanced user. Take a look at the Replay Manager section for more detail. 

Replay Handle 
A ReplayHandle is returned by any begin operations such as BeginRecording or BeginPlayback and is 

used to uniquely identify a replay operation. You will need to pass a replay handle instance any time 

you need to query or change the state of a replay operation via the ReplayManager . Replay Handles 

were added to allow an unlimited number of simultaneous replay operations to be supported.  

Replay Identity 
A ReplayIdentity is a unique serialized id value that all replay components are assigned by the replay 

system when created. The ReplayIdentity is used to identify each replay object, component, data 

segment etc so that the recorded data is restored to the correct objects. ReplayIdentities will be 

generated automatically by the replay system but there are occasions when you may like a particular 

replay object to take on the identity of a different object. This can be useful to record data from one 

object but replay on a different object as used in some use cases such as ghost vehicles. Take a look 

at identity transfer for more information. 

Replay Scene 

Replay State 
A replay state is a storage device that is passed to all recorder components and is used to store 

primitive data types into a data stream. Some Unity types such as Color and Vectors are also 



15 | P a g e  
Trivial Interactive 2020 

supported for ease of use. Any time you need to manually record or restore any replay data, a 

ReplayState  will be passed which you can use to write to or read from. 

ReplaySnapshot 
A ReplaySnapshot contains the entire state data of the active ReplayScene  at a given time stamp. 

Multiple snapshots stored in order can be used to recreate the scene over a period of time much like 

a slideshow or keyframe animation. These snapshots are used as a higher-level storage device and 

can be stored to and fetched from a ReplayStorageTarget  directly. You will not need to deal with 

ReplaySnapshots directly but it is a good idea to understand what they are and their purpose.  

Replay Scene 
A ReplayScene  represents a collection of ReplayObject   s which should be used in a record or replay 

operation. By default, Ultimate Replay 2.0 will use all ReplayObject   s in the active scene for all 

record and replay operations unless you manually specify a custom replay scene. Replay scenes are 

also responsible for a process called state preparation which is required for playback. Essentially, any 

components that could interfere with playback such as rigid bodies, colliders or scripts need to be 

prepared before playback commences.  

Replay Storage Target 
A ReplayStorageTarget  is an end storage device used to store the data that is recorded by the replay 

system. The data that is generated by the replay system is in the form of a ReplaySnapshot which is 

then flushed to the active ReplayStorage when it should be stored. The StorageTarget could be 

anything from a memory storage target to file storage or more.  

Replay Recorder Component 
Recorder components are used to record and replay an associated Unity component. For example, 

the ReplayTransform    component is intended to record and replay the Unity Transform component 

of a specific object. There are many other recorder components built and it is also possible to create 

your own recorder components for unsupported or 3rd party components. 

  



16 | P a g e  
Trivial Interactive 2020 

Replay a Game Object 
In order to create a replay for your game using Ultimate Replay 2.0, you will need to decide which 

game objects should be replayable so that the necessary replay components can be added. The 

objects which are replayable will depend largely on the specific game but generally you will want to 

add replay components to any game objects which move, are animated, have effects such as particle 

systems etc. There are some exceptions but again this will depend on your game. An example would 

be an animated crowd in a sports game. It may not be necessary to record the whole crowd as you 

could just continue playing the animations during the replay. 

Good candidates for replay objects are game objects that are core to the gameplay such as the 

player, enemies, projectiles, effects, sound effects, etc. Basically, any game object which is not 

stationary and whose behaviour does not consist of static continuous animation or similar. In some 

cases, you may need to replay custom gameplay elements which are not supported by built in 

components. For example: a GUI overlay which displays chat text or similar.  

Once you have determined which game objects should be replayable, you then need to add the 

appropriate replay components. There are many replay components built in to Ultimate Replay 2.0 

which are covered in the Recorder Components section. For game objects that move, you will want 

to add a ReplayTransform    component so that the game object transform will be recorded and 

replayed. For Animator components you will want to add a ReplayAnimator  component and so on. 

 

Once you have added the necessary replay components, you should have a working replay system 

which will record and replay the state of all observed components. You just need to use the 

ReplayManager  API to start and stop recording and playback. To quickly test out your newly added 

replay components, you can use the built in Replay Controls interface which will handle the record 

and replay API calls while providing a simple and easy to use interface.  

Take a look at the included demo scenes to see how various replay techniques can be implemented 

and which replay components are used to do so. 

Game Object Hierarchy 
If you have a game object with one or more children that need to be recorded then there are some 

things to consider. It is important that a ReplayObject    component is attached to the highest-level 

game object that has a replay component attached. The ReplayObject    component will usually be 

added automatically when attaching a replay component to a game object but in some cases it may 

not be added at the correct level. Take the following examples: 

Note: A ReplayObject  component will automatically be added when you attach a replay component to a 

game object. This is a required component and will manage one or more recorder components. 



17 | P a g e  
Trivial Interactive 2020 

 

As you can see from the screenshots, ‘GameObject’ 2 has a ReplayTransform  component added 

which causes a ReplayObject    component to be added automatically at the same level. This is fine 

because there are no replay components attached to game objects higher in the hierarchy. 

If we wanted to add a ReplayTransform  component to ‘GameObject 1’ then this would cause an 

issue. If we selected ‘GameObject 1’ and then went to ‘Tools -> Make Selection Replayable -> Replay 

Transform’ then we would end up with the same components as ‘GameObject 2’. The problem is 

that both objects will have a ReplayObject    component attached which is inefficient and may cause 

issues. In scenarios like this, it is enough to simply remove the ReplayObject    component attached 

to ‘GameObject 2’ and now the hierarchy setup is perfectly valid. The highest-level replay 

component in the hierarchy has the only ReplayObject    component attached which will now 

manage both ReplayTransform    components.  

 

For animated objects with a humanoid structure you can use the Replay Humanoid Configurator in 

order to add ReplayTransform  components to all bones in the hierarchy. 

Note: An exception to this rule is if ‘GameObject 2’ in the above example was a prefab instance, in which 

case multiple ReplayObjects would be the way to go in order to support dynamic creation and 

destrouction. 



18 | P a g e  
Trivial Interactive 2020 

Replay Manager 

The Replay Manager is the main interface for Ultimate Replay and is used to control and query all 

replay operations using the static API. If you are coming from Ultimate Replay 1.0 you may already 

be familiar with the Replay Manager however in version 2.0 there are some major differences. It 

may be worth taking a look at the Upgrade Guide section if you haven’t already as this section covers 

some of the major changes from the original asset. 

The ReplayManager is a type that defines the main API of Ultimate Replay 2.0 and will be used by 

your games scripts to control the replay system. The ReplayManager is implemented as a static API 

for ease of use, meaning that you can call its methods from any script without requiring an object 

reference. This means that there is no scene representation of the ReplayManager unlike the 

original asset. This means that scene changes do not cause issues or interfere with the replay syste m 

in any way.  

Main API 
The following section will cover many essential or useful methods of the ReplayManager  that you 

may need to use in your game. Note that not all methods are covered in this section and it is 

recommended that you take a look at the included scripting reference for a full API overview.  

BeginRecording 
Use this method to start a new recording operation using the specified ReplayScene  and 

ReplayStorageTarget . Ultimate Replay 2.0 supports any number of simultaneous record operations 

and the returned ReplayHandle is used to identify the operation. 

 

• ReplayStorageTarget  (recordTarget): The ReplayStorageTarget  used to store the recorded 

data. When null is passed, the ReplayManager .DefaultStoragetTarget is used. 

• ReplayScene  (recordScene): The ReplayScene  used to record data from. The scene cannot 

be empty unless allowEmptyScene is enabled. When null is passed, ReplayScene 

.CurrentScene is used for recording. 

• Bool (cleanRecording): Should the storage target be cleared before recording starts. Default 

is true. 

• Bool (allowEmptyScene): Can an empty scene be passed to this method. When enabled, you 

can pass a ReplayScene  instance with no registered ReplayObject   s. This may be useful if 

you intend to instantiate one or more ReplayObject   s during recording. See replay prefabs 

for more information. Default value is false. 

• ReplayRecordOptions (recordOptions): The replay record options use to specify many 

record preferences. When null is passed, the global project options editable via the settings 

window will be used. 

StopRecording 
Use this method to stop an already running record operation that was previously started us ing 

BeginRecording. 

public static ReplayHandle BeginRecording(ReplayStorageTarget, 

ReplayScene, bool, bool, ReplayRecordOptions) 
 

C# Code 
 
1 

2 
3 



19 | P a g e  
Trivial Interactive 2020 

 

• ReplayHandle (recordHandle): The ReplayHandle of the record operation that should be 

stopped. The handle must be passed by reference and will be disposed by the replay system 

meaning it should no longer be used. 

IsRecording 
Use this method to determine whether a recording operation is currently running with an associated 

replay handle.  

 

• ReplayHandle (recordHandle): A ReplayHandle to check for running record operations. 

Disposed replay handles can be passed which will cause a value of false to be returned.  

SetPlaybackTime 
Use this method to seek to a specific time in the replay. The time value is in seconds and must be 

between 0 and the recording duration. The specified ReplayHandle should be associated with a valid 

running or pause playback operation.  

 

• ReplayHandle (recordHandle): The ReplayHandle of the playback operation that should have 

its playback time offset changed.  

• Float (playbackTimeOffset): The time offset value in seconds used to calculate the final seek 

time based upon the ‘origin’ parameter. This time value acts as a negative offset when an 

origin value of ‘End’ is specified. 

• PlaybackOrigin (origin): Used to specify the replay marker where the time offset should be 

relative to. By default, this value is set to ‘Start’ meaning that the specified time value is 

absolute. Options are: 

o Start: The specified time offset value is relative to the start of the recording, or the 

‘zero’ time stamp. 

o Current: The specified time offset value is relative to the current replay position. For 

example: If the current replay position is ‘5 seconds’ and a time offset value of ‘2 

seconds’ is specified, then playback will seek to the ‘7 second’ mark, assuming that 

the time value is within the bounds of the recording duration. Negative time offset 

values can be used with this origin option if required. 

o End: The specified time offset value will be taken as a negative value (A positive 

value must be specified) and will represent the amount of time in seconds from the 

end of the recording. For example: If the recording duration is ’10 seconds’ in length 

and a time offset value of ‘3 seconds’ is specified, then playback will seek to  the ‘7 

second’ mark. 

public static void StopRecording(ref ReplayHandle) 
 

C# Code 
 
1 

2 

public static bool IsRecording(ReplayHandle) 
 

C# Code 

 
1 
2 

public static void SetPlaybackTime(ReplayHandle, float, 

PlaybackOrigin) 
 

C# Code 
 
1 

2 



20 | P a g e  
Trivial Interactive 2020 

SetPlaybackTimeNormalized 
Use this method to seek to a position in the replay using normalized offset values. This method is 

useful if you want to seek though a replay without taking the duration of the recording into account.  

 

• ReplayHandle (handle): The ReplayHandle of the playback operation that should have its 

time offset changed. 

• Float (playbackNormalizedOffset): A normalized value between 0-1 which is used to 

represent the offset value between to replay marker points. 

• PlaybackOrigin (origin): Used to specify the replay marker where the normalized offset 

value should be used to represent the time offset value. By default, this value is set to ‘Start’ 

meaning that normalized offset indicates the absolute time offset relative to the replay 

duration. Options are: 

o Start: The specified normalized offset is taken from the start of the recording. This 

means that a value of ‘0’ represents the start of the recording and a value of ‘1’ 

represents the end of the recording. Passing a value of ‘0.5’ will cause playback to 

seek to the middle of the replay. 

o Current: The specified normalized offset is taken from the current replay position. 

For example: If the current replay position is set to the absolute middle of the 

replay, passing a value of ‘0.5’ will cause playback to seek to the ¾ mark in the 

replay since the normalized value represents the offset between the current and 

end replay markers. 

o End: The normalized offset is used to represent the offset from the end of the 

recording. This means that a value of ‘0’ represents the last frame in the replay ( Or a 

time stamp equal to the duration of the recording) and a value of ‘1’ represents the 

very start of the recording. I.e. the offset is normalized and inverted.  

SetPlaybackDirection 
Use this method to change the direction of a replay. Useful if you want to add rewind effects or 

simply view a replay in reverse. 

 

• ReplayHandle (handle): The ReplayHandle of the playback operation that you wish to 

modify. The handle should represent a valid and active playback operation started using 

BeginPlayback. 

• PlaybackDirection (direction): The direction that you want playback to run. The default 

value if ‘Forward’ which will play the replay in the normal forward direction. Options are: 

o Forward: Play the replay in the normal forward direction. 

o Backward: Play the replay in reverse direction. 

public static void SetPlaybackTimeNormalized(ReplayHandle, float, 

PlaybackOrigin) 
 

C# Code 
 
1 

2 

public static void SetPlaybackDirection(ReplayHandle, 

PlaybackDirection) 
 

C# Code 
 
1 

2 



21 | P a g e  
Trivial Interactive 2020 

SetPlaybackTimeScale 
Use this method to change the playback speed. The timescale represents the speed that a replay will 

run where a value of ‘1’ is standard playback speed and a value of ‘2’ is twice the standard playback 

speed. Values between 0-1 will cause playback to be slowed where a value of ‘0.5’ represents half 

speed. 

 

• ReplayHandle (handle): The ReplayHandle of the playback operation that you want to 

modify the playback speed of. The handle should represent a valid and active playback 

operation started using BeginPlayback. 

• Float (timescale): A time scale value used to specify the playback speed of a replay. The 

default value of ‘1’ represents the standard playback speed. Note that negative values can 

be specified to cause reverse playback as an alternative to SetPlaybackDirection. 

GetPlaybackTime 
Use this method to retrieve the ReplayTime information for a specific playback operation. The 

ReplayTime result contains information such as absolute playback time stamp, playback frame delta 

and current time scale. 

 

• ReplayHandle (handle): The ReplayHandle of the playback operation to query. The handle 

should be associated with a valid and active playback operation started by calling 

BeginPlayback. 

BeginPlaybackFrame 
Use this method to enter playback mode in fixed frame mode. Fixed frame mode means that 

playback mode is active but the replay will not update meaning only a single playback frame will be 

shown. Full playback operations such as seeking are supported. Useful for showing a fixed frame of a 

replay. Paused playback is an alternative. 

 

• ReplayStorageTarget (replaySource): The ReplayStorageTarget used as the playback source. 

The replay will be streamed by fetching snapshots from the storage target on demand. Pass 

‘null’ to use the default storage target. 

• ReplayScene  (playbackScene): The ReplayScene  used to specify which scene objects should 

be replayed. This allows you to mask the captured data if required so that some objects are 

not replayed, even though they were recorded. Pass the default value of ‘null’ in order to 

use all active ReplayObject  s in the current scene. 

• Bool (allowEmptyScene): A value which determines whether an empty ReplayScene  can be 

passed or not. An empty ReplayScene  will have no valid ReplayObejcts to record but may 

still cause some metadata to be recorded which may be undesirable. Passing ‘false’ will 

public static void SetPlaybackTimeScale(ReplayHandle, float) 
 

C# Code 
 
1 

public static ReplayTime GetPlaybackTime(ReplayHandle) 
 

C# Code 
 
1 

public static ReplaHandle BeginPlaybackFrame(ReplayStorageTarget, 

ReplayScene, bool, ReplayPlaybackOptions) 
 

C# Code 
 
1 



22 | P a g e  
Trivial Interactive 2020 

cause the method to thrown an exception if the specified ReplayScene  does not contain any 

ReplayObejcts. In some scenarios, it may be desirable to use and empty ReplayScene . For 

example: When dynamically spawned objects are used, an empty scene may be allowable in 

which case you can pass ‘true’ to disable empty scene exceptions.  

• ReplayPlaybackOptions (playbackOptions): The options used by the playback service which 

determines much of the playback behaviour such as frame rate and end behaviour. The 

default value of ‘null’ causes the global project playback options to be used which are 

accessible via the settings window. You can also programmatically create the playback 

settings per playback operation if required. 

BeginPlayback 
The main method used to start a previously captured replay. This will cause the replay system start a 

new playback operation using the specified storage target as the data source and the specified 

ReplayScene  to determine which objects are replayed. The specified ReplayScene  does not 

necessarily have to match up to the storage target although a harmless warning may be generated if 

not. In some cases, you may record 2 objects but only want to replay 1 object. This can be achieved 

by using the ReplayScene  to create a mask by removing 1 of those objects. Even though the storage 

target will contain information about 2 objects, only the objects added to the ReplayScene  will be 

replayed. This method will return a ReplayHandle value which will be used for all subsequent state 

change and query operations.  

 

• ReplayStorageTarget (replaySource): The ReplayStorageTarget used as the playback source. 

The replay will be streamed by fetching snapshots from the storage target on demand. Pass 

‘null’ to use the default storage target. 

• ReplayScene  (playbackScene): The ReplayScene  used to specify which scene objects should 

be replayed. This allows you to mask the captured data if required so that some objects are 

not replayed, even though they were recorded. Pass the default value of ‘null’ in order to 

use all active ReplayObject  s in the current scene. 

• Bool (allowEmptyScene): A value which determines whether an empty ReplayScene  can be 

passed or not. An empty ReplayScene  will have no valid ReplayObejcts to record but may 

still cause some metadata to be recorded which may be undesirable. Passing ‘false’ will 

cause the method to thrown an exception if the specified ReplayScene  does not contain any 

ReplayObejcts. In some scenarios, it may be desirable to use and empty ReplayScene . For 

example: When dynamically spawned objects are used, an empty scene may be allowable in 

which case you can pass ‘true’ to disable empty scene exceptions.  

• ReplayPlaybackOptions (playbackOptions): The options used by the playback service which 

determines much of the playback behaviour such as frame rate and end behaviour. The 

default value of ‘null’ causes the global project playback options to be used which are 

accessible via the settings window. You can also programmatically create the playback 

settings per playback operation if required. 

 

public static ReplaHandle BeginPlayback(ReplayStorageTarget, 

ReplayScene, bool, ReplayPlaybackOptions) 
 

C# Code 
 
1 



23 | P a g e  
Trivial Interactive 2020 

StopPlayback 
Use this method to stop a replay that was previously started by calling one of the BeginPlayback 

methods. This method will cause any replaying objects to be rest to live mode, triggering the 

associated ReplayPreparer to restore component states. You must also pass the ReplayHandle for 

the playback operation by reference as the handle will be set to an invalid state since the playback 

operation will no longer exist. 

 

• Ref ReplayHandle (handle): The handle for a running playback operation started using 

BeginPlayback. The handle must be passed by reference using the ‘re f’ keyword because it 

will be no longer be valid and will have its state reset to reflect this.  

• Bool (restorePreviousSceneState): An optional value which determines whether the original 

scene state prior to commencing playback should be restored or not. The replay system will 

automatically record the scene state upon entering playback mode so that it can be reset if 

required. Passing ‘false’ will cause all replaying objects to be left in their current position. 

This could potentially leave objects in mid air or in overlapping collision states so it is 

recommended that most users use the default value of ‘true’ to reset to a known saf e state. 

IsReplaying 
Use this method to determine whether a playback operation is currently running with an associated 

replay handle.  

 

• ReplayHandle (handle): A ReplayHandle to check for running playback operations. Disposed 

replay handles can be passed which will cause a value of false to be returned. 

AddPlaybackEndListener 
Use this method to add an event listener for when a playback operation reaches the end of a replay. 

This is useful to know when a replay has finished so that you can perform some other action.  

 

• ReplayHandle (handle): The handle of a valid playback operation that was started using 

BeginPlayback. 

• Action (playbackEndCallback): The delegate which will be invoked when the associated 

playback operation reaches the end of a replay. The specified delegate must have a return 

type of ‘void’ and not have any parameters in order to be accepted.  

 

public static void StopPlayback(ref ReplayHandle, bool) 
 

C# Code 
 
1 

public static bool IsReplaying(ReplayHandle) 
 

C# Code 
 
1 
2 

public static void AddPlaybackEndListener(ReplayHandle, Action) 
 

C# Code 
 
1 

Note: A matching ‘Remove Listener’ method also exists to remove an added listener but has been 

omitted from this documentation. See the included scripting reference for more information.  



24 | P a g e  
Trivial Interactive 2020 

Replay Settings 
Ultimate Replay 2.0 has a number of global settings which affect various aspects of the asset. Usually 

the default settings will be OK for most games but they can easily be changed by going to ‘Tools -> 

Ultimate Replay -> Settings’ which will open the global settings in the inspector window. The settings 

window is also where you will add prefab references to objects which may be destroyed or 

instantiated dynamically while recording. Take a look at the Replay Prefabs section for more 

information. 

The following section will cover the main settings which can be found on the default ‘General’ tab: 

 

• Record FPS: The record frame rate used to determine how many snapshot frames are 

captured per second. The default value is ‘12’ which will usually be more than enough for 

most games when interpolation is used.  

• Record Update Method: The Unity update event used to update the entire replay system 

during the recording phase. This option is mostly for compatibility reasons and allows replay 

captures to occur at different points in the game loop. The default option is Update which 

will be fine for most games and all supported options are: 

o Update: Use the main Unity update method to update the recording phase of the 

replay system. 

o Late Update: Use the Unity late update method to update the recording phase of 

the replay system. 

o Fixed Update: Use the Unity physics update method to update the recording phase. 

This is not recommended unless you are having issues with the first 2 update 

methods. 

• Playback End Behaviour: Determines what happens when a replay reaches the end of its 

recording. Options are: 

o End Playback: The playback operation will automatically finish and cause the 

associated ReplayObject   s to be prepared for gameplay by switching to live mode. 

o Stop Playback: The replay will stop on the very last frame of the recording but will 

remain in playback mode. This means that playback operations such as seeking will 

still work as expected and you will need to manually call StopPlayback to exit replay 

mode.  



25 | P a g e  
Trivial Interactive 2020 

o Loop Playback: The replay will loop around to the start when the end frame is 

reached resulting in an infinite looping replay. You will need to call StopPlayback 

manually to exit replay mode. This mode is useful for after gameplay highlights that 

run until player input is received. 

• Playback FPS: The replay frame rate used to determine how often playback operations are 

updated. Higher playback frame rates will result in smooth replays, even if the record fps is 

low. This is because playback runs interpolation on the recorded snapshots meaning that it is 

possible to create virtual snapshots in between recorded snapshots with the effect of 

interpolated smoothing, much like in keyframe animation systems. The default value is ‘ -1’ 

which means that playback will run at the game FPS which is recommended. Lower playback 

FPS values can be used if you experience playback performance issues but playback frame 

rates lower than the recorded FPS are not recommended. 

• Playback Update Method: The Unity update event used to update the entire replay system 

during the replay phase. This option is mostly for compatibility reasons and allows replay 

updates to occur at different points in the game loop. The default option is Update which 

will be fine for most games and all supported options are: 

o Update: Use the main Unity update method to update the playback phase of the 

replay system. 

o Late Update: Use the Unity late update method to update the playback phase of the 

replay system. 

o Fixed Update: Use the Unity physics update method to update the playback phase. 

This is not recommended unless you are having issues with the first 2 update 

methods. 

• Replay Prefabs: A collection of prefab references to ReplayObject  s that may be instantiated 

or destroyed during recording. In order for Ultimate Replay 2.0 to support dynamic object 

creation and destruction during recording, you will need to inform the replay system about 

any prefabs that may be dynamic by adding them to the prefabs collection. Instantiating or 

destroying a prefab instance during recording that is not added to this collection will result 

in playback accuracy issues along with a warning message. Take a look at the Replay Prefabs 

section for more information. 

The next section will cover additional settings which can be found on the ‘State Preparation’ tab and 

relate to the built in Default Replay Preparer. As of version 2.1.0, the default replay preparer is now 

fully configurable to make it easier for users to change its behaviour. 



26 | P a g e  
Trivial Interactive 2020 

 

• Ignore Component Types: A collection of component types which will be ignored by the 

default replay preparer. This means that they will not be processed or affected in any way 

when switching between playback and live modes. 

 

This collection will already contain a few types which are added by default and we 

recommend that they remain in most cases. Adding new types can be done easily by clicking 

the ‘Add Type’ button and selecting your desired component type from the resulting context 

menu. Types are organised by ‘[namespace] -> [type name]’ to make them easier to find: 

 

 
 

• Component Processors: This section contains settings for each component processor that is 

used by the default replay preparer. A component processor is simply a special type which 

prepares a specific component for either playback or live modes. Typically, these processors 

will either deactivate or disable their target component when entering playback mode and 

restore the target component to their original state when exiting playback mode. 



27 | P a g e  
Trivial Interactive 2020 

Each component processor has the following options: 

 

o Enabled: Is the component processor enabled. A disabled component processor will 

not run and as a result, will have no effect on the target component when the scene 

is being prepared. 

 

  



28 | P a g e  
Trivial Interactive 2020 

Replay Scene 
A replay scene is used to represent a collection of ReplayObject   s which should be recorded or 

replayed. When you start a record or replay operation using the ReplayManager , you will usually 

need to pass a ReplayScene  instance which will describe which objects should be included in the 

operation. You can create any number or ReplayScene s at a given time although you should take 

care not to start multiple operations on a single scene at the same time as this is not supported. For 

example, multiple record and replay operations can occur at the same time but not with the same 

scene instance. The ReplayManager  will throw an exception is a scene instance is already in use. 

Replay Scene Mode 
A replay scene is a state object and can either be in live or playback modes. Changing the scene 

mode will cause all registered ReplayObject   s to be prepared using the active replay preparer so 

that they are ready to receive record or replay updates. 

• Live Mode: All ReplayObject   s are reset to their initial state using the active replay 

preparer. This means that all scripts, physics components etc. are restore d to their initial 

state. Usually meaning that they are re-enabled or re-activated so that they can interact 

with the game as usual. 

• Playback Mode: All ReplayObject   s are prepared for replay updates by the active replay 

preparer. Scripts and physics components will be disabled to prevent them from 

manipulating the objects during playback allowing the replay system to replicate the 

recording accurately.  

Replay Preparers 
A replay preparer is a special script which is executed on every ReplayObject    in the ReplayScene  

when the scene mode is changed. The purpose of the replay preparer is to find and modify any 

components on the specified ReplayObject    which could potentially interfere with playback 

accuracy. Components such as Rigidbodies or scripts are likely candidates as they could potentially 

move an object during a replay causing it to become out of place according to the recorded data. 

The state of such components is then saved or restored by the preparer depending upon the state 

change so that the component can be deactivated during playback. 

By default, a built-in replay preparer called the DefaultReplayPreparer will be used to prepare 

ReplayObject   s but it is possible to create your own replay preparer script if required. The default 

preparer will potentially affect the following component types: 

• MonoBehaviour scripts (Unless they derive from ReplayBehaviour  ): Scripts will be disabled 

so that the ‘Update’ methods do not run. 

• Physics rigid body 2D / 3D: Rigid bodies will be set to kinematic mode so that forces such as 

gravity do not affect the object. 

• Physics colliders 2D / 3D: Colliders will be disabled so that collision resolution cannot affect 

playback. 

• Animator: Animators will be disabled so that animation poses cannot be applied during 

playback. 



29 | P a g e  
Trivial Interactive 2020 

 

 

Custom Replay Preparer  
If you find that the default replay preparer is affecting components that you do not want it to,  you 

could implement your own replay preparer so that you have full control over which components are 

affected.  

Creating a custom replay preparer is as simple as implementing an interface and then registering it 

with the replay system. First you will need to implement the ‘UltimateReplay.Core.IReplayPreparer’ 

interface which has 2 methods: 

• PrepareForPlayback: This method will be invoked when potential interfering components 

should be deactivated because the replay system is entering playback mode. The method 

will be invoked a number of times for each ReplayObject   in the scene. You will need to use 

the Unity API to find such components and handle them accordingly.  

• PrepareForGameplay: This method will be invoked when exiting playback mode as a result 

of calling StopPlayback and will run on all ReplayObject  s in the associated ReplayScene . 

This method should be used to restore any modified components to their initial state. 

If you wish to implement a custom ReplayPreparer then it may be worth taking a look at how the 

default preparer is implemented by examining the source code. You can find the default preparer 

implementation in the following source file (Not available in the trial version): ‘Assets/Ultimate 

Replay 2.0/Scripts/Core/DefaultReplayPreparer.cs’. It may also be worth checking out the dedicated 

component preparers which can be found inside the ‘StatePreparation’ folder.  

 

Once you have implemented a custom replay preparer, the next step is to register it so that the 

replay system can make use of it. A replay preparer instance is associated with every ReplayScene  

instance as the preparer needs to be run on every ReplayObject   in the ReplayScene . This means 

Note: Script components deriving from ReplayBehaviour will not be modified by the default replay 

preparer. You can derive from this class if you need to prevent a script from being disabled during playback 

on a particular replay object. 

Note: Replay preparers work on a per object basis and will only affect ReplayObjects which were added to 

a ReplayScene. Entering or exiting playback mode will trigger the preparer to run on all ReplayObjects 

which are added to the active ReplayScene instance. 

class ExamplePreparer : IReplayPreparer 

{ 

    public void PrepareForPlayback(ReplayObject replayObject) 

    { 

        foreach(Collider collider in  

replayObject.GetComponents<ReplayObject>()) 

            collider.enabled = false; 

    } 

     

    public void PrepareForGameplay(ReplayObject replayObject) 

    { 

        foreach(Collider collider in 

replayObject.GetComponents<ReplayObject>()) 

            collider.enabled = true; 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 



30 | P a g e  
Trivial Interactive 2020 

that you can provide an IReplayPreparer implementation in the constructor of the ReplayScene  

type. If no preparer is passed, then the default preparer is used automatically.  

 

 

  

class Example : MonoBehaviour 

{ 

    void Start() 

    { 

        ReplayScene scene = new ReplayScene(new ExamplePreparer()); 

        scene.AddReplayObject(...); 

         

        ReplayManager.BeginPlayback(null, scene); 

    } 

} 
 

C# Code 
 
1 
2 
3 
4 

5 
6 
7 

8 
9 

10 

Note: It is possible to implement different replay preparers for different playback operations if required. 

For example: you may want some replays to have colliders enabled so that the player can interact with 

them while you may want another replay to be unaffected. This is possible by creating multiple 

ReplayScene instances. 



31 | P a g e  
Trivial Interactive 2020 

Replay Prefabs 
Ultimate Replay 2.0 is able to record and replay game objects which are instantiated or destroyed 

dynamically using the Unity API. There are some things to consider in order for this behaviour to be 

supported though: 

• The target prefab should have a ReplayObject   component attached to the root object. This 

component is used to identify the prefab and any amount of recorder components can also 

be attached in order to record and replay specific elements of the object like transform.  

• Prefab objects need to be registered with Ultimate Replay 2.0 via the settings window 

otherwise dynamic instantiation/creation will not work. This allows the  replay system to 

know which prefab the game object instance was created from during the recording phase 

so that the replay system can then destroy or create an identical instance during playback. 

• Parenting is only supported when the prefab is instantiated and attached as a child to a 

game object which also has a ReplayObject   component attached. For example: If you 

wanted to instantiate a weapon during recording and attach it to the players hand bone in 

the hierarchy, then the hand bone should have a ReplayObject   component. The replay 

system will then re-create this hierarchy structure during recording. This is one case where 

it is OK to have multiple ReplayObject   components on the same game object, one at the 

player root, and one at the hand bone. 

• After instantiating a prefab, you will need to add a reference to any applicable ReplayScene 

s in order for the replay system to be notified of the object creation.  

Registering Replay Prefabs 
As previously mentioned, all prefab objects that need to be instantiated or destroyed during the 

recording phase need to be registered with Ultimate Replay 2.0 so that identical instances can be 

created on demand during playback. This is an easy process and only takes a couple of steps.  

The first thing you will need to do is identify any prefabs which will need to be instantiated  or 

destroyed while recording. Usually this may include prefabs like bullets or projectiles, effects that 

are spawned, and maybe even enemy characters. Once you have identified these prefabs then you 

should ensure that the prefab root has a ReplayObject   component attached to it as the replay 

system will use this for identification purposes. Any number or replay recorder components such as 

ReplayTransform   can also be added at the same hierarchy level or lower. 

 

You can add a ReplayObject   component to the selected object by going to ‘Tools -> Ultimate Replay 

-> Make Selection Replayable -> ReplayObject  ’. 



32 | P a g e  
Trivial Interactive 2020 

Once you have your prefabs setup correctly, the next step is to register them with Ultimate Replay 

2.0 which is done using the settings window. Open the settings window by going to ‘Tools -> 

Ultimate Replay -> Settings’ where you will see a foldout named ‘Prefabs’. Expand this section until 

you see an array property: 

 

You will need to add any dynamic prefabs to this array by resizing the array and then using drag and 

drop to assign your prefabs.  

 

Repeat this step for any other dynamic prefabs that you may need to register with the replay 

system. You can always add or remove the prefab references at a later date as you develop and 

refactor your game. 

Register via script 
Using the settings window is the easiest and recommended way of  registering your prefabs with the 

replay system but it is also possible to do it from a script. It is also quite a simple process and 

requires only a single method call but there are some things to note:  

• You will need to ensure that you register the dynamic prefab before you begin recording 

otherwise there may be issues with instantiating or destroying those prefab instances. 

• The method accepts a game object argument which should be the prefab object and not a 

prefab instance. Passing a prefab instance may cause issues during playback.  

• The prefab object passed to the method must have a ReplayObject   component attached at 

the prefab root. 

To register a prefab dynamically from a script you will need to use the ‘ReplayManager 

.RegisterReplayPrefab’ method as shown here: 

 

class Example : MonoBehaviour 

{ 

    // Assign in inspector 

    public GameObject myPrefab; 

     

    void Start() 

    { 

        // Register the prefab 

        ReplayManager.RegisterReplayPrefab(myPrefab); 

         

        // Record operations can now start 

        ReplayManager.BeginRecording(...); 

    } 

} 
 

C# Code 
 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 



33 | P a g e  
Trivial Interactive 2020 

 

Instantiating Replay Prefabs 
Once you have registered your dynamic prefabs with Ultimate Replay 2.0, you are now able to call 

‘Instantiate’ during the recording phase in order to create an instance of that prefab. Once you have 

instantiated a prefab, you will then need to add it to a replay scene manually so that it will be 

recorded like all other ReplayObject  s. There are a few ways to achieve this: 

Using Replay Scene 
As covered previously, a ReplayScene  will usually be passed to the replay begin methods such as 

BeginRecording. This means that the creation and management of this scene instance is handled by 

the user and as a result, adding a replay prefab to that scene is trivial: 

 

Using Replay Manager 
An alternative and possibly easier approach is to use the ReplayManager  to add the newly created 

replay object. The main benefit of this approach is that it is possible  to add the replay object to all 

active recording scenes if multiple scenes are currently recording.  

Note: Registering a dynamic prefab via script is not persistent like the settings approach so it will need to 

be performed on every game session. There is also no way to unregister a replay prefab once it has been 

added. 

class Example : MonoBehaviour 

{ 

    private ReplayScene recordScene; 

     

    // Assign in inspector 

    public GameObject myPrefab; 

     

    void Start() 

    { 

        // Create a scene instance 

        recordScene = ReplayScene.FromCurrentScene(); 

         

        // Start recording 

        ReplayManager.BeginRecording(null, recordScene); 

         

        // Create instance as usual in Unity 

        GameObject go = Instantiate(myPrefab); 

         

        // Add replay prefab instance to scene so that it is 

recorded 

        recordScene.AddReplayObject(go. 

GetComponent<ReplayObject>()); 

    } 

} 

C# Code 

 
1 
2 
3 

4 
5 
6 

7 
8 
9 

10 

11 
12 
13 
14 

15 
16 
17 

18 
19 
20 
21 

22 



34 | P a g e  
Trivial Interactive 2020 

 

As you can see by the name of the method, this will cause the replay object to be added to all active 

ReplayScene s which are in use by a running record operation.  

Destroying Replay Prefabs 
Destroying prefab instances during recording is an even easier process. There is no need to 

unregister the prefab instance when you are destroying it since it is detected automatically when the 

reference becomes null. This means that it is just a case of destroying your game object like you 

would normally using the Unity API: 

class Example : MonoBehaviour 

{ 

    private ReplayScene recordScene; 

     

    // Assign in inspector 

    public GameObject myPrefab; 

     

    void Start() 

    { 

        // Create a scene instance 

        recordScene = ReplayScene.FromCurrentScene(); 

         

        // Start recording 

        ReplayManager.BeginRecording(null, recordScene); 

         

        // Create instance as usual in Unity 

        GameObject go = Instantiate(myPrefab); 

         

        // Add to recording scenes 

  ReplayManager.AddReplayObjectToRecordScenes(go. 

GetComponent<ReplayObject>()); 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 

17 
18 
19 

20 
21 
22 
23 



35 | P a g e  
Trivial Interactive 2020 

 

If you are using a pooling system to instantiate and destroy your prefab instances, then you will need 

to manually unregister the replay object from the replay system manually since the object reference 

will not become null. This is due to the fact that most pooling systems will simply deactivate game 

objects but keep them in memory so the reference remains valid.  

Unregistering a replay object from a ReplayScene  manually is quite simple to do and unlike the 

instantiate approach, there is only one way that this can be done. You will need a reference to the 

ReplayScene  that you are using for recording and the you can unregister the object like so: 

class Example : MonoBehaviour 

{ 

    private ReplayScene recordScene; 

     

    // Assign in inspector 

    public GameObject myPrefab; 

     

    IEnumerator Start() 

    { 

        // Create a scene instance 

        recordScene = ReplayScene.FromCurrentScene(); 

         

        // Start recording 

        ReplayManager.BeginRecording(null, recordScene); 

         

        // Create instance as usual in Unity 

        GameObject go = Instantiate(myPrefab); 

         

        // Add to recording scenes 

        ReplayManager.AddReplayObjectToRecordScenes(go. 

GetComponent<ReplayObject>()); 

         

        yield return new WaitForSeconds(2f); 

         

        // Destroy the prefab instance 

        Destroy(go); 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 

17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 



36 | P a g e  
Trivial Interactive 2020 

 

 

After following these steps, you should now be able to create and destroy prefab instances during 

recording and have them replayed without issue. Objects that were instantiated during recording 

will be created automatically during playback on demand and objects that were destroyed will also 

disappear during playback as you would expect.  

Take a look at the included cubes demo scene which demonstrates this technique in a working 

example.   

  

class Example : MonoBehaviour 

{ 

    private ReplayScene recordScene; 

     

    // Assign in inspector 

    public GameObject instance; 

     

    IEnumerator Start() 

    { 

        // Create a scene instance 

        recordScene = ReplayScene.FromCurrentScene(); 

         

        // Start recording 

        ReplayManager.BeginRecording(null, recordScene); 

         

        // Use your favourite pooling asset to despawn the object 

        SomePoolingAPI.Despawn(instance); 

         

        // Remove the object from the scene and it will no longer be 

recorded 

        recordScene.RemoveReplayObject(go. 

GetComponent<ReplayObject>()); 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 

17 
18 
19 

20 
21 
22 
23 



37 | P a g e  
Trivial Interactive 2020 

Replay Storage Target 
In order to record objects in the scene, a storage device is required which has the responsibility of 

storing the recorded data in some form. These storage devices are known as ReplayStorageTarget s 

and there are many different types included with Ultimate Replay 2.0 by default. In addition, it is 

also possible to create your own storage target if the built-in targets do not meet your needs by 

implementing an abstract class. This is only recommended for advanced users though. 

Any time you need to start recording or replaying, you will need to provide a ReplayStorageTarget  

as the source to read data from, or the target to write data to. 

Replay Memory Target 
A replay memory target is used to store replay data in memory as the name suggests. The data may 

be compressed to reduce storage space but you should still be wary about memory usage when 

recording large or complex scenes with a high number of recorder components. Take a look at the 

replay statistics section which shows how you can identify the memory used by stored data.  

The replay memory target supports limited, unlimited and rolling recording modes to support a 

variety of use cases however you should take care with memory usage in large or complex scenes 

with many replay components. A limited or rolling buffer memory target is recommended in most 

cases. 

 

• Limited: A limited memory target can be used to record a replay up to s specified memory 

size without exceeding that value. The constructor accepts an integer value which 

represents the maximum number of bytes that the memory target can store. If a write 

operation occurs when the memory target is full, an OutOfMemory exception will be raised.  

 

• Unlimited: A memory target that is not limited in any way to the amount of data that can be 

stored. This means that you can theoretically record data until the system runs out of 

memory. We highly recommend that you only use an unlimited memory target if you target 

if you will be recording for short periods or will carefully monitor the memory usage on 

many test systems to ensure that it remains acceptable. You can use the replay statistics to 

get usage information and also the Unity profiler window.  

• Rolling Buffer: A rolling buffer memory target is used to record the last X amount of 

gameplay continuously. The time value can be specified via the constructor in seconds and 

ReplayStorageTarget target; 

 

// Create an unlimited memory target 

target = ReplayMemoryTarget.CreateUnlimited(); 

 

// Create a rolling memory target to record the last 15s of gameplay 

target = ReplayMemoryTarget.CreateTimeLimitedRolling(15); 

 

// Create a memory target limited to a size of 65565 bytes in size 

target = ReplayMemoryTarget.CreateMemorySizeLimited(65565); 
 

C# Code 
 
1 
2 
3 
4 

5 
6 
7 
8 

9 
10 

Note: The memory size specified does not include any overhead that may be allocated by the memory 

target in order to support storage, compression and read operations.  



38 | P a g e  
Trivial Interactive 2020 

the memory target will record data until the target time is met. From then on, every new 

second of data recorded will cause the very first second of the recording to be delete d 

resulting in the target containing only the last X amount of seconds of gameplay. This is a 

common technique used in games that make use of killcam or similar where you are only 

interested in recording the players last few seconds before they are killed.  

Replay Stream Target 
A ReplayStreamTarget is a storage target that is able to write to and read from a System.Stream 

object. The replay data is stored in a proprietary binary format that is highly optimized for reduced 

storage space and loading time. Any System.Stream implementation is supported as long as the 

following features are implemented: 

• Stream.Seek: Required when reading the replay data as data is stored in chunks which are 

discoverable via lookup tables. 

• Stream.Position: Required during reading and writing to calculate offsets. 

• Stream.Length: Required during reading and writing to calculate negative offsets and data 

sizes. 

The ReplayStreamTarget uses threading to stream chunks of replay data without blocking the main 

thread. This allows for seamless playback as chunk prediction algorithms are also used to pre-fetch 

data that may be required while in playback mode. Note that some platforms such as WebGL do not 

support threading in which case these async operations will be loaded back onto the main thread 

automatically which may cause stutters or jitter in replays. A ReplayMemoryTarget is recommended 

on these platforms if possible as there is much less overhead in terms of  

compression/decompression. 

A ReplayStreamTarget storage device can be created for recording or replaying purposes using the 

following method: 

 

 

Replay File Target 
A ReplayFileTarget can be used to stream a recording or a replay to or from file. This is highly useful 

if you need to create recordings that persist over multiple game sessions or even upload them to a 

sharing service or similar for other players to view. The ReplayFileTarget is built on top of the 

ReplayStreamTarget component and as a result, will generate the same data output using the same 

streaming techniques.  

// Create a stream to hold the data 

Stream stream = new MemoryStream(); 

 

// Create a storage target from the specified stream 

ReplayStorageTarget target = 

ReplayStreamTarget.CreateReplayStream(stream); 
 

C# Code 
 
1 

2 
3 
4 

5 
6 

Note: This approach works for both saving and loading a replay using a stream object. If you want to load 

a replay, then ensure that you pass a Stream object containing valid replay data and everything will work 

as expected. 



39 | P a g e  
Trivial Interactive 2020 

A ReplayFileTarget storage device can be created as shown below, depending upon whether you 

want to create a file, or read from an existing replay file. The resulting storage target can then be 

passed to BeginRecording or BeginPlayback in order to record or replay using the target. 

 

 

Custom Replay Storage Target 
If the built-in storage targets do not meet your needs for any reason, then it is possible to create 

your own storage target by implementing and abstract class. You will need to implement the 

‘UltimateReplay.Storage.ReplayStorageTarget’ abstract class and is only recommended for advanced 

users. The details of the implementation will not be covered here but the API is covered in the 

included scripting reference. You can also take a look at the source code for the built -in targets such 

as ReplayMemoryTarget to see how the storage device is implemented. 

  

ReplayStorageTarget target = null; 

 

// Create a new file with the specified path for recording 

target = 

ReplayFileTarget.CreateReplayFile("ReplayFiles/example.replay"); 

 

// Create a new file with a unique generated name for recording 

target = ReplayFileTarget.CreateUniqueReplayFile("ReplayFiles/", 

".replay"); 

 

// Load an existing replay file 

target = 

ReplayFileTarget.ReadReplayFile("ReplayFiles/example.replay"); 
 

C# Code 

 
1 
2 
3 

4 
5 
6 

7 
8 
9 

10 

11 
12 
13 

Note: If you have already created a replay file and have a reference to that storage target, you can simply 

pass the reference to BeginPlayback and the target will automatically switch into read mode so that the 

replay can be streamed. 



40 | P a g e  
Trivial Interactive 2020 

Replay Object 
A ReplayObject    is an essential replay component which must be attached to any game object that 

will record or replay data. The ReplayObject    component acts as a managing component and is 

responsible for uniquely identifying the game object and managing any recorder components that 

may be attached, including child objects. Generally, you will only have a single ReplayObject    

component attached to the root of a game object hierarchy unless you are dealing with prefab 

instances. Recorder components such as ReplayTransform   s can then be attached to the same 

game object or any child objects and will be automatically detected and managed by the Immediate 

parent or adjacent ReplayObject   .  

The main purpose of the replay object is to uniquely identify a game object in the replay system so 

that the necessary replay data can be distributed to the correct game objects during playback.  A 

ReplayObject    is identified by the Replay Identity property which is a persistent id value for the 

object. Any recorded data is stored along with the ReplayIdentity. 

 

Inspector 
The ReplayObject    component has a custom inspector drawer which displays useful information 

about the component. 

 

• Replay Identity: A unique and persistent id value used by the replay system to identify the 

game object. This value will be generated automatically when adding a ReplayObject    

component or on game start for prefab instances. 

• Prefab Identity: A unique id value that is used to identity the associated prefab if any. Note 

that this value will still be generated even if the parent game object is not a prefab instance. 

See replay prefabs for more information. 

• Replay Components: A list of replay components that are managed by this ReplayObject   . 

Components will be displayed by their object name and component type and will be 

indented according to their hierarchy depth for clarity. Note that this list is read-only and is 

updated automatically when replay components are added or removed. 

Identity Transfer 
A ReplayObject    and replay recorder components all have unique id values which are generated by 

the replay system to identify each component to the replay system. These id values are then used 

during playback to route the necessary replay data to the correct component for deserialization. This 

works well and is an efficient means of storage since an object can be identified by a 2-byte value (2 

bytes by default but 4 bytes is supported).  

Note: ReplayObject components will be added automatically where applicable when adding a component 

deriving from ReplayBehaviour. A ReplayObject component will be added when no suitable adjacent or 

parent ReplayObject is found. 



41 | P a g e  
Trivial Interactive 2020 

In some scenarios, it may be desirable to modify the identity of a game object for replay purposes so 

that it is able to replay the recorded data from another object. An example where this may be useful 

would be a ghost vehicle in a racing game where you would want to record the player vehicle but 

replay onto another ghost vehicle object. This can be achieved by transfe rring the identity of a 

source object onto a target object using identity transfer. Ultimate Replay 2.0 has a quick and easy 

way to do this but there are some things to consider: 

• The source and target objects should have the same hierarchy structure where replay 

components are attached. 

• The source and target replay objects should have the same observed component count and 

order. 

A good way to ensure that these replay components are structured the same is to duplicate the 

source object (The player vehicle in this example) and create the new target object by modifying the 

duplicate (The ghost vehicle).  

Once you have 2 objects that share the same replay hierarchy then you can transfer replay identities 

at any time by calling the following method: 

 

This method takes a source object as the first parameter and the target object as the second 

parameter. Using the ghost vehicle example, we would pass the player vehicle object first and the 

ghost vehicle object second. The method will then copy and apply the replay identities of all 

attached replay components onto the target object. 

There is also an overload method which accepts 2 game objects for ease of use. This method  will 

simply get all ReplayObject    components from the source and target objects and clone each one.  

 

 

  

bool ReplayObject.CloneReplayObjectIdentity(ReplayObject, 

ReplayObject) 
 

C# Code 
 
1 

2 

bool ReplayObject.CloneReplayObjectIdentity(GameObject, GameObject) 
 

C# Code 
 
1 
2 



42 | P a g e  
Trivial Interactive 2020 

Replay Behaviour 
A ReplayBehaviour   is a component that derives from MonoBehaviour and has many useful 

contextual replay properties and events. It may be useful to create script components that derive 

from ReplayBehaviour   when they will be attached to a recorded object. In addition, 

ReplayBehaviour  components are not affected by Replay Preparers so it may be useful to derive 

from this base class if your script need to run while in playback mode. 

The ReplayBehaviour  type has a number of useful properties such as IsRecording and IsReplaying 

which will allow you to determine the current state of the associated game object. These properties 

are contextual and not global like in the original asset. That means that some game objects may be 

in recording mode while others may be in playback mode at the same time since multiple 

simultaneous replay operations are now supported. These contextual properties allow you to 

determine the true replay state of a specific object. 

Replay Messages 
The ReplayBehaviour   component has a number of virtual methods that can be overridden and will 

be called by the replay system at various times. These message events may be useful to your game 

components when the state of the replay system changes. Note that these messages are contextual 

and will only be called on the relevant ReplayBehaviour  s since different recording and replay states 

are possible for different objects.  

OnReplayStart  
Called when the parent game object is about to start replaying. This is triggered as a result of a call 

to BeginPlayback. 

 

OnReplayEnd 
Called when the parent game object is about to end playback. This could be triggered as a result of 

an EndPlayback call or if the replay reaches the end of the recording. 

 

OnReplayPlayPause 
Called when the parent game object is about to pause or resume playback. This is triggered as a 

result of calling PausePlayback or ResumePlayback. The bool value passed to the event indicates 

whether the pause state is enabled or disables where a value of ‘true’ means paused.  

 

public virtual void OnReplayStart(); 
 

C# Code 
 
1 

2 

public virtual void OnReplayStart(); 
 

C# Code 
 
1 
2 

public virtual void OnReplayPlayPause(bool); 
 

C# Code 
 
1 
2 



43 | P a g e  
Trivial Interactive 2020 

OnReplayReset 
Called when the behaviour should reset or discard any cached values or data as playback may be 

about to begin. This is useful for resetting any interpolation data or similar that may be stored 

between replay frames. 

 

OnReplayCapture  
Called when the behaviour should submit any replay data for recording. This event will only be called 

during recording and is useful to submit event or method record data by calling RecordEvent or 

RecordMethodCall. Note that replay data can also be submitted via update methods or similar but 

you must take care to only record data during recording phases. 

 

OnReplayUpdate 
Called when the behaviour should update during playback. This method will only be called during 

playback and will be passed the current ReplayTime information for the associated replay. This event 

is useful for updating any replay elements such as interpolation at full game  speed. The passed time 

value includes information about the current playback time and delta time between frames which 

may be useful for interpolation. 

 

OnReplayEvent 
Called when the behaviour should read replay event data. When you record an event using 

RecordEvent, this method will be invoked during playback with the event id and state data. The id 

value is used to identify the event type and the event data is an option data state that was passed to 

the RecordEvent method. You will need to read the state data in the correct format and order to 

avoid errors. 

 

OnReplaySpawned 
Called when the parent game object was instantiated for playback purposes by the replay system. A 

replay registered prefab instance must be instantiated during recording in order for this method to 

be triggered during playback. The initial position and rotation of the object as passed.  

 

 

public virtual void OnReplayReset(); 
 

C# Code 
 
1 
2 

public virtual void OnReplayCapture(); 
 

C# Code 
 
1 
2 

public virtual void OnReplayUpdate(ReplayTime); 
 

C# Code 
 
1 
2 

public virtual void OnReplayEvent(ushort, ReplayState); 
 

C# Code 
 
1 
2 

public virtual void OnReplaySpawned(Vector3, Quaternion); 
 

C# Code 
 
1 
2 



44 | P a g e  
Trivial Interactive 2020 

Replay Events 
Replay events can be used when you want to record a change in state or similar that does not 

happen often. You can record an event during the recording phase and the replay system will invoke 

the OnReplayEvent callback of the ReplayBehaviour  component when that event was reached 

during playback. A ReplayEvent is made up of an event id value which is specified by the user, along 

with an optional ReplayState  containing any data associated with the event. It is the responsibility of 

the user to specify unique event id values and to ensure that any event data is serialized and 

deserialized in the correct format. 

In order to record a ReplayEvent, you will first need to create a script deriving from ReplayBehaviour 

. You can then call the RecordEvent method while the object is recording in order to record a replay 

event. You can make use of the IsRecording property of the ReplayBehaviour  component to check 

for the recording phase. Alternatively, you can also override the OnReplayCapture event which will 

only be called during the recording phase.   

 

As you can see in the above code example, a replay event is recorded every second that the object is 

being recorded. Note that we need to pass an event id value which in this case is set to a value of ‘ 1’ 

but the event id can be any value between 0-65565. We also pass an optional ReplayState  to the 

RecordEvent method containing a simple string, but we could also add much more useful 

information here or event pass ‘null’ if no data is required. 

Receiving replay events during playback is just as simple and involves overriding the OnReplayEvent 

callback of the ReplayBehaviour  script: 

class Example : ReplayBehaviour 

{ 

    float lastTime = 0; 

 

    void Update() 

    { 

        // Record a replay event every second 

        if(IsRecording == true && Time.time > lastTime + 1f) 

        { 

            // Add optional data to the event 

            ReplayState state = ReplayState.pool.GetReusable(); 

            state.Write("Hello World");          

         

            // Record an event 

            RecordEvent(1, state); 

             

            lastTime = Time.time; 

        } 

    } 

} 
 

C# Code 
 
1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 

12 
13 
14 
15 

16 
17 
18 

19 



45 | P a g e  
Trivial Interactive 2020 

 

The OnReplayEvent callback will be invoked by the replay system for every event type. You will then 

need to filter the events by event id as shown in the code example and handle the event accordingly. 

In this case, we simply check for our event id of ‘1’ and print out the string value that was recorded  

to the console.  

 

Replay Methods 
Replay methods can be used to record and replay method calls of any static or instance method of a 

ReplayBehaviour   script. Only methods that accept primitive parameters such as int, string, bool etc. 

are supported and the replay system will log an error if an unsupported parameter type is used. In 

order to record a method, you can simply use the following ReplayBehaviour   methods: 

 

As you can see, there are a number of overload methods which allow any method with any 

parameter type to be supported, limited to a parameter count of 4. The following code 

demonstrates how to use these methods: 

class Example : ReplayBehaviour 

{ 

    public override void OnReplayEvent(ushort eventID, ReplayState 

eventData) 

    { 

        switch(eventID) 

        { 

            case 1: 

            { 

                Debug.Log("Event 1: " + eventData.ReadString()); 

                break; 

            } 

        } 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 

public void RecordMethodCall(Action method) 

public void RecordMethodCall<T>(Action<T> method, T arg) 

public void RecordMethodCall<T0, T1>(Action<T0, T1> method, T0 arg0, 

T1 arg1) 

public void RecordMethodCall<T0, T1, T2>(Action<T0, T1, T2> method, 

T0 arg0, T1 arg1, T2 arg2) 

public void RecordMethodCall<T0, T1, T2, T3>(Action<T0, T1, T2, T3> 

method, T0 arg0, T1 arg1, T2 arg2, T3 arg3) 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 



46 | P a g e  
Trivial Interactive 2020 

 

As you can see in the example, the methods are passed as delegates as the first argument and then 

you may or may not need to specify the additional arguments for the target method. Parameters at 

index 1 and onwards will be the arguments for the target method in order. You can see in the 

example code that a string and integer argument need to be passed when recording the 

DoSomethingElse method otherwise a compiler error will be generated. 

Method recording should only be done when the ReplayBehaviour   is currently recording which can 

be determined by checking the IsRecoreding property. Alternatively, you can do all of the recording 

inside the OnReplayCapture  event which will only be called during the recording phase. 

Calling RecordMethodCall during recording will cause the method to be invoked immediately with 

the specified arguments, as if calling it directly. The method information will then also be serialized 

by the replay system along with the specified arguments so that the method can be called again 

during playback. 

 

Replay Variables 
Replay variables are a simple and convenient way of recording and replaying primitive class variables 

without the need to write the serialize and deserialize code. Any field defined in a class deriving from 

ReplayBehaviour   can use replay variables as long as the type is a primitive such as int and string, or 

if the type is a Unity Vector3, Quaternion or Color. You can mark a variable as replayable by adding 

the ReplayVar attribute as shown below: 

class Example : ReplayBehaviour 

{ 

    void Update() 

    { 

        if(IsRecording == true) 

        { 

            RecordMethodCall(DoSomething); 

            RecordMethodCall(DoSomethingElse, "Hello World", 3); 

        } 

    } 

     

    void DoSomething() 

    { 

        Debug.Log("Hello"); 

    } 

     

    void DoSomethingElse(string message, int count) 

    { 

        for(int i = 0; i < count; i++) 

            Debug.Log(message); 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 

17 
18 
19 

20 
21 

Note: Methods that return a value cannot be recorded by the replay system. If you want to record a 

method that returns a value, then you should create a void wrapper method to call that target method, 

disregarding the return value. You can then record the wrapper method as normal. 



47 | P a g e  
Trivial Interactive 2020 

 

Once a field has been marked as a replay variable, you can change its value during recording and any 

changes will be restored during playback. This is all done automatically by the replay system which 

makes it quick and easy to implement.  

 

 

Replay variables also fully support interpolation if the type support it. By default, values of type int, 

float or similar will be interpolated during playback to smooth out transitions which may or may not 

be desirable. If you are recording values like state id’s or index values, then interpolation sho uld 

preferably be disabled to prevent strange behaviour. This can be done by simply passing ‘false’ in the 

attribute declaration. 

 

  

class Example : ReplayBehaviour 

{ 

    [ReplayVar] 

    public int myValue = 50; 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

class Example : ReplayBehaviour 

{ 

    [ReplayVar] 

    public int myValue = 50; 

     

    void Update() 

    { 

        if(IsRecording == true) 

        { 

            myValue++; 

        } 

        else if(IsReplaying == true) 

        { 

            Debug.Log(myValue); 

        } 

    } 

} 
 

C# Code 
 
1 
2 

3 
4 
5 
6 

7 
8 
9 

10 

11 
12 
13 

14 
15 
16 

Note: ReplayVariables may have a little more overhead in the way of storage space when compared with 

custom recorder components. This is because extra metadata needs to be stored along with the data.  

class Example : ReplayBehaviour 

{ 

    [ReplayVar(false)] 

    public int myValue = 50; 

} 
 

C# Code 
 
1 

2 
3 
4 

5 



48 | P a g e  
Trivial Interactive 2020 

Recorder Components 
Recorder components are special components that can be attached to a game object and are 

intended to record and replay the behaviour of another component. For example, A 

ReplayTransform    component is used to record and replay the Unity transform component. 

Ultimate Replay 2.0 has a number of built in recorder components which can be used to record a 

number of Unity components which may or may not be useful for your game. 

Every recorder component must have a ReplayObject    component attached to the same game 

object or to a game object higher in the hierarchy. If no suitable ReplayObject    component is found 

when attaching a recorder component, Ultimate Replay 2.0 will automatically add the ReplayObject    

component to the same object.  

Recorder components will also display information about the amount of data they generate per 

recording sample. This information will usually be displayed at the bottom of the inspector window 

for the component in a help box. Note that some components may only be able to display th is data 

when in play mode. 

 

Replay Transform 
The ReplayTransform    component can be added to a game object and will cause the transform of 

that object to be recordable and replayable by Ultimate Replay 2.0. Position, rotation and scale 

values can be recorded and replayed in various configurations and the component also supports 

frame interpolation for smoother playback. 

Create Menu 
A ReplayTransform   component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Transform’. This will cause a ReplayTransform   component to be 

added to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayTransform   component has a number of properties which can be edited via the inspector 

window. Multi-object editing is supported for this component. 

 

• Replay Identity: The unique id value given to the component by the replay system. This 

value is auto-generated. 

• Replay Object: The unique id value of the associated replay object that is managing the 

component. Name information may also be included for quick lookup.  

• Replay Position: Should the positional aspect of the transform be recorded. 



49 | P a g e  
Trivial Interactive 2020 

o XYZ: When enabled, all elements of the position will be recorded. You can disable 

this toggle to select individual positional elements if required. 

o Local: When enabled, location position will be recorded as opposed to world 

rotation. Local recording is recommended when the game object is a child of 

another object. 

o Lerp: Should linear interpolation be used during playback for smooth frame 

transitions. Interpolation is highly recommended as it allows for much lowe r 

recording frame rates. 

o LP: Should the recorded data be stored in low precision. This is only recommended 

for objects that do not move much, are not in the main focus of a camera view and 

are not too fare from the world centre (+-1000 units max). This will cause the data to 

be stored in half precision so some accuracy may be lost. 

• Replay Rotation: Should the rotational aspects of the transform be recorded. 

o XYZ: When enabled, all axis of rotation will be recorded and stored as a quaternion 

data structure to avoid gimbal lock. When disabled and all axis are not selected, the 

data will be stored as Euler angles for the selected axis. Disable this toggle to select 

individual axis elements for recording.  

o Local: When enabled, local rotation will be recorded as opposed to world rotation. 

Local recording is recommended when the game object is a child of another object. 

o Lerp: Should linear interpolation be used during playback to smooth rotation 

between playback frames. Interpolation is highly recommended and allows for much 

lower recording frame rates. 

o LP: Should the recorded rotation be stored in low precision. This is only 

recommended for objects that do not move much, are not in the main focus of a 

camera view and are not too fare from the world centre (+-1000 units max). This will 

cause the data to be stored in half precision so some accuracy may be lost. 

• Repay Scale: Should the scale aspects of the transform be recorded. 

o XYZ: When enabled, all elements of the transform scale will be recorded. Disable 

this toggle to select individual record axis. By default, scale recording is disabled as it 

is not often required. 

o Lerp: Should linear interpolation be used during playback to smooth scale between 

playback frames. This option is disabled by default for the scale element as it may 

cause undesirable behaviour if you intend to snap between 2 scale values.  

o LP: Should the scale data be recorded in low precision. 

 

  



50 | P a g e  
Trivial Interactive 2020 

Replay Enabled State 
The ReplayEnabledState component is used to record and replay an objects active state as set using 

SetActive. This is useful to record objects that may become active or inactive during recording and 

will cause the same behaviour during playback. 

Create menu 
A ReplayEnabledState component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Enabled State. This will cause a ReplayEnabledState component to be 

added to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
This component does not have any editable inspector properties but does display information that 

may be useful. 

 

• Replay Identity: The unique id value given to the component by the replay system. This 

value is auto-generated. 

• Replay Object: The unique id value of the associated replay object that is managing the 

component. Name information may also be included for quick lookup.  

 

Replay Component Enabled State 
The ReplayEnabledComponentState component is much like the ReplayEnabledState component but 

is used to record the state of behaviour components. This is useful to record the state of 

components such as scripts deriving from ReplayBehaviour   which will be replayed. Note that non-

ReplayBehaviour   scripts will usually be disabled when entering playback mode by the 

ReplayPreparer  so you should only record non-script behaviours or scripts deriving from 

ReplayBehaviour   which are treated specially by the ReplayPreparer . 

Create menu 
A ReplayComponentEnabledState component can be added via the menu ‘Tools -> Ultimate Replay -

> Make Selection Replayable -> Replay Component Enabled State. This will cause a 

ReplayComponentEnabledState component to be added to the selected game object and may also 

attach a ReplayObject    component if required. 

Inspector 
This component does not have any editable inspector properties but does display information that 

may be useful. 



51 | P a g e  
Trivial Interactive 2020 

 

 

• Replay Identity: The unique id value given to the component by the replay system. This 

value is auto-generated. 

• Replay Object: The unique id value of the associated replay object that is managing the 

component. Name information may also be included for quick lookup. 

• Observed Component: A reference to a behaviour component that should have its enabled 

state recorded. It is recommended that the assigned behaviour is attached to the same 

object hierarchy although it is not required. If no behaviour is assigned then no data will be 

recorded. 

 

  



52 | P a g e  
Trivial Interactive 2020 

Replay Animator 
The ReplayAnimator  component is used to record and replay the animation state driven by the 

Unity Animator component. This is useful for recording animated characters or objects which use 

the Animator component. The component will serialize all necessary state data for the animator 

including parameters so that the animation state can be recreated during playback.  

Create menu 
A ReplayAnimator  component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Animator. This will cause a ReplayAnimator  component to be added 

to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayAnimator  component has al number of inspector properties which affect how and what 

data is recorded. The default options will usually be sufficient for most games however it may be 

desirable to play around with the options to get the most accurate playback results using as little 

storage space as possible. This is especially true for Animator components which do not define any 

parameters. 

 

• Replay Identity: The unique id value given to the component by the replay system. This 

value is auto-generated. 

• Replay Object: The unique id value of the associated replay object that is managing the 

component. Name information may also be included for quick lookup. 

• Observed Animator: The animator component that should be recorded and replayed. When 

adding the component, the observed animator property may be automatically filled out with 

any animator component attached to the same game object. It is recommended that the 

assigned Animator component is attached to the same game object or hierarchy.  

• Replay Main Layer: When enabled, the main layer of the Animator state machine will be 

recorded and replayed. 

• Replay Sub Layers: When enabled, all additional layers of the Animator state machine will 

be recorded and replayed. 

• Interpolate: Should animation poses be interpolated between replay frames to give a 

smoother playback result in low record FPS scenarios. Interpolation is highly recommended 

to produce smooth results with minimal stored data.  

• Low Precision: When enabled, data will be stored in low precision where supported in order 

to reduce the storage space required. This is not recommended for animated objects that 

are close to the camera as there may be some data loss causing slight inaccuracies during 

playback. 



53 | P a g e  
Trivial Interactive 2020 

• Replay Parameters: Should the Animator state machine parameters be recorded. It is highly 

recommended that parameters are recorded if they are used in order to create an accurate 

replay.  

• Interpolate Int Parameters: Should integer parameters of the animator state machine be 

interpolated during playback. Interpolation is not recommended if the int parameter is used 

as an index/state value or similar and not as a numerical value as it could cause strange 

behaviour during playback. 

•  Interpolate Float Parameters: Should floating point parameters of the animator state 

machine be interpolated during playback. This may be useful for parameters such as move 

speed or similar which can be smoother gradually between replay frames.  

 

  



54 | P a g e  
Trivial Interactive 2020 

Replay Particle System 
The ReplayParticleSystem component is used to record and replay the Unity particle system 

component. The component works by serializing the particle system simulation time during the 

recording phase and then re-simulating to that timestamp during the playback phase.  

Create menu 
A ReplayParticleSystem component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Particle System. This will cause a ReplayParticleSystem component to 

be added to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayParticleSystem has some required and optional properties in order for the component to 

work correctly which can be setup via the inspector window.  

 

• Replay Identity: The unique id value of the recorder component which is auto-generated by 

the replay system when the component is added. 

• Replay Object: The unique id value of the managing ReplayObject    that is responsible for 

this recorder component. The property may also include component name information for 

easy lookup. 

• Observed Particle System: A reference to the Unity particle system component that should 

be recorded and replayed. This is a required value and leaving it empty will cause the 

component to do nothing. 

• Interpolate: Should the particle system by interpolated during playback to produce 

smoother results where low record frame rates are used.  

 

Replay Audio 
The ReplayAudio component can be used to record and replay a Unity audio source so that game 

sound effects can be used in replays. The audio component works by detecting audio played from a 

specific AudioSource component and then storing data such as sample rate and time values so that 

the audio can be replayed during playback.  

Create menu 
A ReplayAudio component can be added via the menu ‘Tools -> Ultimate Replay -> Make Selection 

Replayable -> Replay Audio. This will cause a ReplayAudio component to be added to the selected 

game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayAudio component has a number of inspector properties that determine which data is 

recorded and can be used to optimize for playback accuracy vs storage size.  



55 | P a g e  
Trivial Interactive 2020 

 

• Replay Identity: A unique ID value used to identify the component which is auto-generated 

by the replay system when the component is added. 

• Replay Object: The unique ID value of the associated managing ReplayObject   component 

which is responsible for updating this recorder component. 

• Observed Audio: A reference to a Unity AudioSource component which will be used to 

record and replay any emitted audio. If this value is not assigned, then the ReplayAudio 

component will do nothing. Note that the observed audio source should have a single audio 

clip assigned which should not be changed at any time.  

• Replay Pitch: Should the pitch value of the audio source be recorded. You can disable this 

value if the pitch value of the audio source will never change during recording or playback. 

• Replay Volume: Should the volume value of the audio source be recorded. You can disable 

this value if the volume will never change during recording or playback.  

• Replay Stereo Pan: Should the stereo pan value of the audio source be recorded. Only 

required if the stereo pan value will change during recording or playback.  

• Replay Spatial Blend: Should the spatial blend value of the audio source be recorded. Only 

required if the spatial blend value of the audio source will change during recording or 

playback. 

• Reverb Zone Mix: Should the reverb zone mix value of the audio source be recorded. Only 

required if the reverb zone mix of the audio source will change during recording or playback.  

• Interpolate: Should the audio source time sample value be interpolated to create smoother 

audio playback. Disabling this option may cause strange audio playback if low record rates 

are used. 

• Low Precision: Should the component record supported data in low precision mode to 

consume less storage space.  

 

  



56 | P a g e  
Trivial Interactive 2020 

Replay Material Change 
The ReplayMaterialChange component can be used to record and replay any material changes of a 

renderer component. Material changes will be detected automatically while recording and the 

component will attempt to restore the correct material during playback from a pool of possible 

materials that you can setup. 

Create menu 
A ReplayMaterialChange component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Material -> Material Change’. This will cause a ReplayMaterialChange 

component to be added to the selected game object and may also attach a ReplayObject    

component if required. 

Inspector 
The ReplayMaterialChange component has some inspector properties which can be used to control 

how the renderer material is recorded. There is also useful information displayed here such as the 

replay id used to identify the component in the replay system. 

 

• Replay Identity: The unique ID value used to identify the recorder component in the replay 

system. This value is auto-generated when the component is added to a game object. 

• Replay Object: The unique ID value of the managing ReplayObject   component that is 

responsible for updating this recorder component.  

• Observed Renderer: A reference to a Unity renderer component whose material should be 

recorded and replayed.  

• Default Material: A fallback material instance that will be used when the assigned material 

could not be restored. Typically, this will occur when you assign a material instance that has 

not been added to the ‘Available Materials’ array. By default, this material will be set to the 

main material of the renderer at the time of adding the component. 

• Available Materials: A collection of material instance that could potentially be assigned to 

the observed renderer. The ReplayMaterialComponent is only able to restore materials that 

have been added to this collection and assigning a different material will cause the 

component to fallback to the ‘Default Material’ during playback. 

• Shared Material: Should the component record and replay using the ‘sharedMaterial’ 

property of the renderer. This is highly recommended because the ‘material’ property of the 

renderer will be used if this value is disabled. The ‘material’ property will allocate a new 

material instance on access. 

• Replay All Materials: Enable this option if your target renderer has more than one material. 

This will ensure that material changes for all material slots are recorded and replayed. 

  



57 | P a g e  
Trivial Interactive 2020 

Replay Material 
The ReplayMaterial component can be used to record and replay properties of a material assigned 

to a specified renderer component slot. This is useful for recording material properties such as color 

change over time. 

Create menu 
A ReplayMaterial component can be added via the menu ‘Tools -> Ultimate Replay -> Make Selection 

Replayable -> Replay Material -> Material Properties. This will cause a ReplayMaterial component to 

be added to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayMaterial component has some inspector properties which can be used to control how the 

renderer material is recorded. There is also useful information displayed here such as the replay id 

used to identify the component in the replay system. 

 

• Replay Identity: The unique ID value used to identify the recorder component in the replay 

system. This value is auto-generated when the component is added to a game object. 

• Replay Object: The unique ID value of the managing ReplayObject   component that is 

responsible for updating this recorder component.  

• Observed Renderer: A reference to a Unity renderer component whose material properties 

should be recorded and replayed.  

• Material Index: The index of the material that you want to record. This index value 

represents the material index into the observed renderers material collection. Use a value of 

‘-1’ if the main material of the renderer should be used. Note that you can use multiple 

ReplayMaterial components on the same renderer to record properties for multiple 

materials. 

• Shared Material: Should the component record and replay using the ‘sharedMaterial’ 

property of the renderer. This is highly recommended because the ‘material’ property of the 

renderer will be used if this value is disabled. The ‘material’ property will allocate a new 

material instance on access. 

• Replay Color: Should the color property of the target material be recorded and replayed.  

• Replay Main Texture Offset: Should the main texture offset of the target material be 

recorded and replayed. 

• Replay Main Texture Scale: Should the main texture scale of the target material be recorded 

and replayed. 

• Replay Double Sided GI: Should the double-sided global illumination property of the target 

material be recorded and replayed. 



58 | P a g e  
Trivial Interactive 2020 

• Replay Global Illumination: Should the global illumination flags of the target material be 

recorded and replayed. 

• Interpolate: Should supported material properties be interpolated between frames to 

provide a smooth transition. For supported properties such as color, this will create a 

smooth blend effect over time between the last and target color.  



59 | P a g e  
Trivial Interactive 2020 

Replay Line Renderer 
The ReplayLineRenderer component can be used to record and replay the Unity line renderer 

component. Note that this component can potentially use a lot of storage space so it is worth 

keeping an eye on the statistics information displayed in the inspector window. 

Create menu 
A ReplayLineRenderer component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Line Renderer. This will cause a ReplayLineRenderer component to be 

added to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayLineRenderer component has some inspector properties which can be used to control 

how the line renderer is recorded. There is also useful information displayed here such as the replay 

id used to identify the component in the replay system. 

 

• Replay Identity: The unique ID value used to identify the recorder component in the replay 

system. This value is auto-generated when the component is added to a game object. 

• Replay Object: The unique ID value of the managing ReplayObject   component that is 

responsible for updating this recorder component.  

• Observed line Renderer: A reference to a Unity line renderer component which will be 

recorded and replayed. It is recommended that the assigned line renderer exists on the 

same game object, although it is not a requirement. 

• Interpolate: Should the line renderer positions be interpolated during playback. This will 

produce smoother results if low record rates are used and is highly recommended. 

 

  



60 | P a g e  
Trivial Interactive 2020 

Replay Trail Renderer (Unity 2018.2 or newer) 
The ReplayTrailRenderer component can be used to record and replay a Unity trail renderer 

component. Note that this component can potentially use a lot of storage space so it is worth 

keeping an eye on the statistics information displayed in the inspector window. 

 

Create menu 
A ReplayTrailRenderer component can be added via the menu ‘Tools -> Ultimate Replay -> Make 

Selection Replayable -> Replay Trail Renderer. This will cause a ReplayTrailRenderer component to 

be added to the selected game object and may also attach a ReplayObject    component if required. 

Inspector 
The ReplayTrailRenderer component has some inspector properties which can be used to control 

how the line renderer is recorded. There is also useful information displayed here such as the replay 

id used to identify the component in the replay system. The properties are much the same as the 

ReplayLineRenderer component as the same technique is used for both components.  

• Replay Identity: The unique ID value used to identify the recorder component in the replay 

system. This value is auto-generated when the component is added to a game object. 

• Replay Object: The unique ID value of the managing ReplayObject   component that is 

responsible for updating this recorder component.  

• Observed line Renderer: A reference to a Unity line renderer component which will be 

recorded and replayed. It is recommended that the assigned line renderer exists on the 

same game object, although it is not a requirement. 

• Interpolate: Should the line renderer positions be interpolated during playback. This will 

produce smoother results if low record rates are used and is highly recommended. 

 

  

Note: This recorder component is only available in Unity version 2018.2 or newer, and is not available in 

the trial version of the due to the usage of pre-processor directives. The trail renderer component did not 

exist in previous versions of Unity.  



61 | P a g e  
Trivial Interactive 2020 

Custom Recorder Components 
Ultimate Replay 2.0 has a number of built in recorder components which can record and replay 

many frequently used Unity components. In some scenarios, it may be the case that a custom 

recorder component is required because one does not already exist, or you need to record a 

component from a third-party package. In Ultimate Replay 2.0, we have made it as easy as possible 

to create a custom recorder component and it can be as simple as implementing the 

ReplayRecordableBehaviour abstract class. This class has just 2 method which need to be 

overridden: OnReplaySerialize and OnReplayDeserialize. 

In order to create a custom recorder component, a basic understanding of how the replay system 

works will prove very useful. Essentially, the replay system has a fixed record rate such as 16ms 

intervals for 60FPS. The replay system will wait for 16ms to pass and then begin a ‘Sample Pass’ 

which is where all replay objects collect and return data from their observed recorder components. 

The replay object will call OnReplaySerialize for all recorder components which is where per 

component data is serialized into a ReplayState  object. The replay system will then verify, tag and 

compress the data ready for writing to the associated storage target and repeat until StopRecording 

is called. 

Playback is much the same as recording except that the data is sent to the appropriate replay object 

which is then responsible for calling OnReplayDeseirlaize on the observed component. The 

OnReplayDeserialize can be used to restore the state of the component or to store the data for 

interpolation purposes. The basic principles are:  

• OnReplaySerialize is used to record component data which is needed to restore the state at 

a later time. For example, the ReplayTransform    component can record position, rotation 

and scale data so that the transform can be updated fully during playback. The method will 

be called multiple times during recording to create a sequence of state data. 

• OnReplayDeserialize is called when the component should restore its state. The correct state 

date for the sequence position will be provided so it is just a case of deserializing the data 

and restoring the component state. It may also be desirable to store the state data between 

frames as fields so that interpolation can be performed via the update method.  

Here is an example of a custom recorder component that records and replays the assigned material 

of a renderer component: 



62 | P a g e  
Trivial Interactive 2020 

 

The material is checked against an array of possible materials and an index value is stored into the 

ReplayState  object which represents the assigned material. If the current material does not exist in 

the possible materials array then an error value of ‘-1’ is stored in the state object to reflect this. The 

deserialize method then attempts to restore the correct material to the renderer by reading back 

this index value. Note that the error case is properly handled and will set the renderer material to 

null. 

  

class Example : ReplayRecordableBehaviour 

{ 

    public Renderer renderer; 

    public Material[]  materials; 

     

    public override void OnReplaySerialize(ReplayState state) 

    { 

        bool matechedMaterial = false; 

         

        for(int i = 0; i < materials.Length; i++) 

        { 

            if(renderer.material == materials[i]) 

            { 

                state.Write(i); 

                matchedMaterial = true; 

                break; 

            }            

        } 

         

        if(matchedMaterial == false) 

            state.Write(-1); 

    } 

     

    public override void OnReplayDeserialize(ReplayState state) 

    { 

        int materialIndex = state.ReadInt32(); 

         

        if(materialIndex == -1) 

        { 

            renderer.material = null; 

        } 

        else if(materialIndex >= 0 && materialIndex < 

materials.Length) 

        { 

            renderer.material = materials[materialIndex]; 

        } 

    } 

} 
 

C# Code 
 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 

17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 

31 
32 
33 
34 

35 
36 



63 | P a g e  
Trivial Interactive 2020 

Replay Controls 
Ultimate Replay 2.0 includes a simple replay controls UI just like in the original asset. This UI is 

implemented using the legacy Unity immediate mode GUI and is intended for quick testing and 

demonstration purposes. If you need a similar in game UI then we recommend that you create your 

own using your favourite UI package or asset since the immediate mode GUI is now depreciated. 

Here you can see the replay controls UI in record mode: 

 

The replay controls UI has 3 different modes which can be used to switch between different states in 

the replay system. Ultimate Replay 2.0 supports an unlimited number of simultaneous record and 

replay operations; however, the replay controls can only be used to control a single replay operation 

at any given time. This means that the controls can be used to either record, replay or remain idle. 

The replay state can be changed at any time using the controls in the upper left corner and is also 

indicated by the selected button: 

.  

• Live Mode: Live mode allows gameplay to continue as expected. All replay objects have their 

components restored gameplay mode and physics and animation systems can control 

objects as normal. 

• Record Mode: All replay objects are recorded at a fixed rate based upon the recording 

interval as specified via the settings window. All active ReplayObject  s in the scene will be 

recorded to a memory storage target. 

•  Playback Mode: Playback mode allows you to view the recorded data and see the replay as 

it was recorded. All replay objects will be prepared for playback which involves disabling 

various game systems such as physics and scripts which could otherwise cause the object to 

move out of playback position. The replay system will then proceed to recreate the 

recording by restoring scene snapshots or key frames. 

Record Mode 
The replay controls include a record mode which is used to record replay objects in the scene over a 

period of time. The record state is indicated by the framing borders being displayed as part of the UI 



64 | P a g e  
Trivial Interactive 2020 

along with the current record duration in seconds. The replay controls will always store its recorded 

data in a memory target with an unlimited size meaning that long recordings are possible.  

You can start recording with the replay controls UI by selecting the ‘Rec’ mode button which will 

begin capturing the scene. 

 

Playback Mode 
The replay controls also provide a convenient way to view the last recorded segment with full 

control via a playback seek control as well as speed and direction controls. The replay controls will 

also offer free cam perspective during playback meaning that you can move the camera around the 

scene using navigation keys to view the replay from any perspective.  

 

• State Controls: As previously mentioned, the state controls allow you to switch between 

Live, Record and Playback modes offering full testing abilities. 

• Free Cam Hint: The free cam hint is only displayed while in playback mode and indicates that 

you are able to move the camera around using the navigation controls. Keyboard and mouse 

control hits will also be displayed here. 

• Playback Speed: The speed that the replay will be played at. The speed slider allows speeds 

between 0-2 to be specified where 1 is the default playback speed. A value of 0 would cause 

the playback to halt whereas a value of 2 would cause playback to run twice as fast. Note 

that the GUI slider is limited to 0-2 for ease of use but the replay system accepts much larger 

values via code. 

• Playback Direction: Used to toggle between forward and reverse playback. 



65 | P a g e  
Trivial Interactive 2020 

• Playback Time: Displays the current playback time value in seconds for the recording (Also 

indicated by the seek slider position) along with the total duration of the recording in 

seconds. 

• Playback Settings: Used to show/hide the playback options popup containing the speed and 

direction controls. 

• Playback Slider: The playback slider indicates the current playback position in relation to the 

overall recording. The slider can also be used to seek to different points in the replay by 

dragging or clicking along the slider bar. Note that interpolation is not available while 

seeking so snapping or jumping may occur when slowly scrubbing.  

• Play/Pause: Allows playback to be paused or resumed at any point.  

Free Cam Mode 
One of the advantages of using a state-based replay system is that you are able to view the replay 

from any camera angle, or even multiple cameras in succession in order to create a highlights reel or 

similar. This is possible because the replay is rendered in real-time using the active camera. 

The ReplayControls component makes use of this feature by allowing a free cam mode during 

playback which allows you to fly the camera around the scene as a replay is running. While in 

playback mode, you will see in the upper right corner that ‘Free Cam’ mode is enabled, meaning that 

you can manipulate the camera using the following controls: 

• W: Move the camera forward relative to the current camera heading. 

• S: Move the camera backwards relative to the current camera heading. 

• A: Move the camera left relative to the current camera heading. 

• D: Move the camera right relative to the current camera heading. 

• RMB + Drag: Pan / tilt the camera angle based upon the mouse movement. 

Exiting and re-entering playback mode will cause the free cam to be reset to its initial position which 

will be the position of the active rendering camera when entering playback mode.  

 

  

Note: in order to preserve any gameplay cameras in the scene, the replay system will create its own 

camera that will be used during free cam mode which will adopt the position and rotation of the active 

scene camera. This will give the effect of moving the current scene camera but in actual fact, scene 

cameras will be left untouched. 



66 | P a g e  
Trivial Interactive 2020 

Replay Techniques 
Replay Animation 
Recording and replaying animated objects is a common use case of Ultimate Replay 2.0 and as a 

result we have added support for replaying Animator components, as well as support for IK 

animations via an alternative approach. 

The ReplayAnimator  component can be attached to a game object in order to record its animations. 

You will need to assign the ObservedAnimator property of the ReplayAnimator  component to the 

Animator that you want to record and replay. After that, your animations should be recorded and 

replayed seamlessly by the replay system. Take a look at the ReplayAnimator  section for more 

detail. 

Some games may make use of IK animation to position bones via scripts to reach a target pose. 

Ultimate Replay 2.0 can also support IK animation, although a different approach needs to be used 

to setup the object. Essentially, each bone in the object skeleton that you wish to record should have 

a ReplayTransform    component attached, and a single managing ReplayObject    component at the 

root. If this sounds too complicated then don’t worry, we have created a editor tools to help setup 

these replay component properly. The Replay Humanoid Configurator can be used to add the 

necessary replay components. Take a look at the Replay Humanoid Configurator section for more 

information.  

Replay Ragdolls 
Some games may make use of physics-based ragdolls for enemy deaths or similar which can also be 

recorded and replayed by Ultimate Replay 2.0. The process of recording a ragdoll character or similar 

is much the same as recording IK animation and requires that each bone in the skeleton has a 

ReplayTransform  component attached. If your ragdoll has a humanoid structure, then setup is made 

quite simple using the Replay Humanoid Configurator which automates this process. For generic rigs, 

you will need to manually attach the recorder components which is a little tedious but worthwhile.  

These simple rules will ensure that your replay components are placed on the correct objects in the 

ragdoll hierarchy: 

1. A ReplayObject   component is required on the very root of the ragdoll object. This will 

usually be the highest object in the hierarchy. 

2. A ReplayTransform  should be added to every bone in the hierarchy. An easy way to do this 

to setup your ragdoll using the Unity ragdoll window, and then add a ReplayTransform  

component to every object in the hierarchy that has a ‘Character Joint’ component attached. 

3. Any ReplayTransform  components that are not attached to the very root of the object 

should have their position and rotation options set to record in local space. 

Here is an example setup to give you a better idea (This example assumes that you have already 

setup your ragdoll in Unity): 

-Root       ReplayObject  , ReplayTransform  (World Space) 
--Bone 1     Character Joint, Replay Transform (Local Space) 
--Bone 2     Character Joint, Replay Transform (Local Space) 
---Bone 3     Character Joint, Replay Transform (Local Space) 
------Bone 4     Character Joint, Replay Transform (Local Space) 
 



67 | P a g e  
Trivial Interactive 2020 

After attaching replay components following the structure above, you can immediately test the 
scene to ensure that everything is working correctly. It may also be worth taking a look at the 
included killcam demo scene which uses the ragdoll replay technique. The demo scene can be found 
at ‘Assets/Ultimate Replay 2.0/Demo/Killcam.unity’ 
 

Killcams 
Killcams are another use case that Ultimate Replay 2.0 fully supports. A killcam is usually used to 

replay the last few seconds of the game when a player is killed so that they can see the death from 

the point of view of the shooter. If we break down this problem, we can see that the following things 

are required in order to create a working killcam system: 

• Continuous recording of the last (n)seconds of gameplay 

• The ability to view the replay from different perspectives 

• A scene to playback the recording without outside influences. For example, other players in 

a networked game. 

Ultimate Replay 2.0 has support for endless continuous recording when using a 

ReplayMemoryTarget  as the storage device. Generally, a killcam will only need to use memory 

storage as any old data is no longer relevant and can be discarded. A ReplayMemoryTarget  has a 

time value in seconds that can be assigned to which represents the maximum length of recording 

that can be stored. This is not a normal limit though as the time value is a negative offset. Ie. This 

time value is used to constrain the recorded data to the last x amount of seconds so that the 

smallest amount of memory is used and endless recording is possible without running into memory 

usage issues. 

Note that some games may like to use a killcam but also have the ability to record complete game 

sessions at the same time. Ultimate Replay 2.0 can now support an unlimited number of 

simultaneous replay operations so it is possible to both record in memory for the in-game killcam, 

and stream the entire game session to file or another storage device if required.  

Another key aspect of a killcam is that the replay viewpoint is from the perspective of the shooter. 

This means that you get to view the actions of another enemy/player leading up to the death as if 

you were in their shoes. Luckily, this is something that is very easy to achieve using Ultimate Replay 

2.0 due to the state-based approach used for replays. Ultimate Replay 2.0 renders all replays in 

realtime using the active camera. This camera can be positioned at any location and moved as 

required in order to view the replay from any location. 

The easiest way to achieve this would be to attach a secondary camera to the enemy character 

model assuming a first person killcam is required. This camera should be setup as a first-person view 

for the enemy but will not be activated until you need to view the replay. You will also need to 

record the transform of this camera so that the players movements are captured. Then when 

entering playback mode, it is simply a case of switching cameras to view the replay from the shooter 

perspective. This step can be repeated for each enemy/player in the game so that all potential 

shooters can be used as the viewing perspective. 

One final thing to consider when implementing a killcam is where a replay will be constructed. 

Ultimate Replay 2.0 uses the recorded scene objects to reconstruct the scene which could 

potentially cause issues. For example: If you have a networked multiplayer game  where you send 

player updates across the network, when you switch to replay mode, other clients may receive the 

results of the replay rather than the gameplay. In this scenario, you would need to suspend network 



68 | P a g e  
Trivial Interactive 2020 

updates while the replay is running so that the local scene is not synced to other clients, and also 

that other clients do not affect the local scene used for the replay which could cause inaccurate 

playback. It is not a major issue, but something to take into account when designing a killcam 

system. 

Ultimate Replay 2.0 can be used to create ghost vehicles for a racing game and it is now much easier 

and better supported than in the original asset. A ghost vehicle is used in racing games to show the 

player their previous best racing line/time, usually via a semi-transparent non-collidable car. To 

setup a ghost vehicle system there are a few things to consider: 

• The player vehicle is used for recording 

• Usually a different ghost vehicle object is used for playback 

• The player could beat their previous time and the ghost vehicle should display the fastest lap 

only 

Recording the player vehicle is straight forward and can be achieved with the built-in recorder 

components, namely the ReplayTransform    component. This would record the vehicles transform 

as it drives around the track. The problem comes when we need to replay the recording. Usually 

with Ultimate Replay 2.0 you could just call BeginPlayback and the replay would run just fine. The 

issue though is that the replay would be played back on the player car instead of the ghost vehicle 

which is not desirable. This can be resolved quite easily though using identity  transfer to allow the 

ghost vehicle object to take on the identity of the player car for playback purposes. Take a look at 

the identity transfer section for more information.  

Using the identity transfer technique, we can allow the player car to record the information as it 

drives around the track, and then replay that information onto a different ghost vehicle car. This 

means that the player car is not taken over by the replay and is free to drive another lap. It also  

means that a completely different game object usually with a different visual appearance can be 

used for the ghost vehicle which is an ideal solution. 

Another thing to consider when implementing a ghost vehicle system is that the player could beat 

their previous lap and the ghost vehicle would need to use this latest replay to reflect this. This 

means that we need to record every lap that the player car completes, just in case they posted a 

faster time. This is quite simple to do using the following rules: 

1. Start recording the player car when they cross the start/finish line and wait for the lap to 

complete. 

2. Check if we have any previous times posted.  

a. If yes, then we check the newly posted lap time to see if it was faster and store the 

recording if so. The recording can safely be discarded if the time was not a new 

record as a previous recording will exist. 

b. If no, then we keep a reference to the storage target that contains the recording 

and start recording the player car again using a new recording target. 

3. Create a ghost vehicle using the identify transfer process and replay the saved storage 

target which contains the fastest lap time. 

4. Loop back to step 2 or until the player quits the game. 



69 | P a g e  
Trivial Interactive 2020 

Replay Statistics 
Ultimate Replay 2.0 uses a state-based approach and needs to store data for each recorder 

component of every ReplayObject   in the scene in order for replays to be captured. On top of this, 

snapshot frames are captured in quick succession, often at over 16 frames per second which can 

result in quite a bit of data to store. Ultimate Replay 2.0 features some highly effective lossless 

compression techniques to keep that figure low but you can also save storage space on a per 

component basis. Many recorder components such as ReplayTransform  have inspector properties 

which control which data is recorded and how accurately. By tuning these components to only 

record what is needed, you will be able to reduce the overall storage requirements for your replays.  

It is important to note that saving a couple of bytes per component may not seem like much, but at 

over 16FPS and many recorder components in the scene, it does in fact add up to make quite a 

difference to the overall size. You will notice that any component deriving from ReplayBehaviour  

will display useful stats in the inspector window indicating how much data is generated pe r average 

sample. This figure is essentially the amount of data you can expect to be produced by the 

component for every recording sample prior to compression techniques.  

 

 

When you change the properties of the recorder components, you will see that the  statistics data 

updates in real time to give you immediate feedback on the storage requirements for the 

component. This is highly useful to fine tune a recorder component for playback accuracy vs storage 

size. 

Storage Statistics 
Per component statistics are useful to fine tune recorder components, but it does not give an overall 

idea of the amount of actual storage space required by all replay objects in the scene. Ultimate 

Replay 2.0 addresses this issue but gathering statistics from all active storage targets to give a single 

total usage value in real time. There is a dedicated component to display this information as UI text 

but an API is also available so that you can use that data in any way you need.  

The ReplayStatistics component can be attached to any game object in the scene and will display the 

realtime total storage value used by all storage targets. You will see that value change as recording 

operations are updated and new data is written to a storage device. The component can be added to 

a game object by going to ‘Add Component -> Scripts -> Ultimate Replay -> Replay Statistics’. 

Note: Some recorder components may only be able to provide accurate data statistics while in play mode. 

An example would be the ReplayAnimator component which displays a sample size of ‘0’ while the game is 

not running, but displays accurate statistics in play mode.  



70 | P a g e  
Trivial Interactive 2020 

 

As mentioned previously, an API is also available to access this data via script if required. The 

‘UltimateReplay.Statistics’ namespace contains methods to access th is information such as: 

 

This method is used by the ReplayStatistics component and will return an integer value representing 

the total amount of bytes used by all active storage targets combined. Any storage target that exists 

in memory will be included in the calculation as the constructor is used to register for statistics. Dead 

storage targets are not included and by setting all references to a storage target to ‘null’, the storage 

target will no longer affect the calculation. In the same namespace, there is also the useful 

ReplayStatisticsUtil type which contains many helper methods to convert a byte value to the largest 

possible unit such as ‘KB’, as well as get the string representation of the unit. 

  

ReplayStorageTargetStatistics.CalculateReplayMemoryUsage(); 
 

C# Code 
 
1 

2 



71 | P a g e  
Trivial Interactive 2020 

Replay Humanoid Configurator 
The replay humanoid configuration is used to setup humanoid characters for bone recording. Bone 

recording may be required I order to record non-standard animation techniques like inverse 

kinematics which are not supported by the Animator. You can also use this approach to record 

ragdolls or as an alternative to the ReplayAnimator  component. 

Essentially in order for this technique to work correctly, a number of ReplayTransform  components 

need to be added to each bone transform in the object hierarchy along with a single managing 

ReplayObject    component on the root. Doing this manually would be time consuming and possibly 

error prone so we have created a simple editor tool to automate the process to make things easier.  

The Replay Humanoid configurator window can be opened by going to ‘Tools -> Ultimate Replay -> 

Setup -> Replay Humanoid’. This will open the setup window which operates on the currently 

selected game object.  

 

 

• Target Object: This field displays information about the current selected object so that you 

know which object will be configured by the setup tool. 

• Replay Components: This section will display a collection of replay components which 

already exist on the selected object. Note that components attached to child objects will 

also be listed here as well as ReplayObject   components. If one or more components exist, 

then you can use the ‘Strip Components’ button to remove them so that you start the setup 

with a clean object. 

• Root Transform: This section displays ReplayTransform  information which will be applied to 

the root object. In this case, the ‘RPG-Character’ object will receive a ReplayTransform  

component with identical properties when the ‘Apply Compontents’ button is clicked. The 

Note: The selected game object must have an Animator component attached with a suitable humanoid 

avatar assigned. If the selected object is not suitable, then the setup window will display a warning to 

indicate this. 



72 | P a g e  
Trivial Interactive 2020 

root transform should almost always use world space for recording position and rotation 

values. 

• Bone Transform: This section displays ReplayTransform  information which will be applied to 

every selected bone of the humanoid skeleton. This will allow the movement of each bone 

to be recorded and replayed, allowing for animation and physics movements to be recorded. 

Bone transforms should almost always use local space for recording position and rotation 

elements of the transform. 

• Apply Root Transform: When enabled, the root transform information specified in the ‘Root 

Transform’ section will be applied. If this option is unchecked, the root object will not 

receive a ReplayTransform  component. 

• Apply Bone Transforms: This section contains a list of bones that should be recorded by the 

replay system. Each bone is named as per the avatar description and can be selected or 

deselected to specify whether replay components should be applied to that particular bone. 

By default, all bones are enabled and will receive replay components.  

 

 
 

Once you are happy with your root and bone transforms, and have selected the bones that you want 

to be recorded, you can then hit the ‘Apply Components’ button. This will apply the necessary replay 

components to the appropriate bones in the hierarchy using the properties specified. You should 

then have a fully recordable humanoid character that supports standard animation, IK animation, 

ragdolls and other physics-based bone manipulation. 

 

  



73 | P a g e  
Trivial Interactive 2020 

Integration 
This section will cover common integration techniques that can be used to better incorporate 

Ultimate Replay 2.0 into your game project. 

Pooling Support 
Ultimate Replay 2.0 is able to support dynamic prefab instantiation and destruction during recording 

meaning that game objects can be added and removed during recording and playback will replicate 

this behaviour. In order to do this, Ultimate Replay 2.0 will Instantiate and Destroy prefab instances 

as required using the Unity API. This may not be desirable if your game implements a pooling 

solution as you may like to have full control over the creation and destruction of objects. The good 

news is that Ultimate Replay 2.0 was designed with pooling in mind and it is possible  to completely 

take over this process. 

Ultimate Replay 2.0 has 2 static delegates which can be used to add Instantiate and Destroy 

listeners. These listeners will then be invoked every time Ultimate Replay 2.0 needs to instantiate or 

destroy a game object in order to achieve an accurate playback state. These delegates are 

OnReplayInstantiate and OnReplayDestroy and can be found in the UltimateReplay type. You can 

add listeners as shown below: 

 

 

 

class Example : Monobehaviour 

{ 

    void Start() 

    { 

        UltimateReplay.OnReplayInstantiate = CreateObject; 

        UltimateReplay.OnReplayDestroy = DestroyObject; 

    } 

     

    GameObject CreateObject(GameObject prefab, Vector3 pos, 

Quaternion rot) 

    { 

        // Create instance from pool... 

    } 

     

    void DestroyObject(GameObject target) 

    { 

        // Remove instance from pool... 

    } 

} 
 

C# Code 
 
1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 

12 
13 
14 
15 

16 
17 
18 

Note: If an instantiate or destroy handler fails by returning null or throwing an exception, Ultimate Replay 

2.0 will default to the standard approach of using Instantiate and Destroy to avoid playback issues. 



74 | P a g e  
Trivial Interactive 2020 

How do I… 
Get the replay duration? 
Once you have recorded a replay to a storage device, you can access the overall duration of the 

recording using the Duration property of the storage target. The duration will be set to zero if no 

data has been recorded. 

 

 

Set playback time? 
You can seek to particular a particular time stamp of a recording during playback. There are 2 

methods of the ReplayManager  which can be used to achieve this.  

 

This method accepts a replay handle which should be a valid playback handle returned by 

BeginPlayback. The second parameter is the time stamp value that you want to seek to in seconds. 

Note that this value is relative to the specified PlaybackOrigin. The final parameter is the seek origin 

which indicates where the specified time value should be offset from. This works in a similar way to 

file system seeking and allows you to seek relative to the start of the recording, the current 

recording position and the end or the recording. Negative time values are accepted since seeking 

relative to the end of the recording requires a negative time offset.  

 

This method also allows you to seek though a recording during playback but only accepts normalized 

values. The first and last parameters are the same as above but the second parameter is now a 

normalized value between 0 and 1. When a playback origin of Start is specified, an offset value of 0 

would indicate the start of the replay and a value of 1 would represent the end of the recording.  

 

ReplayStorageTarget target = new ReplayMemoryTarget(); 

 

// Get the recording duration is seconds 

float duration = target.Duration; 
 

C# Code 
 
1 

2 
3 
4 

ReplayHandle handle = ReplayManager.BeginPlayback(); 

 

// Seek to the 2 second mark 

ReplayManager.SetPlaybackTime(handle, 2f, PlaybackOrigin.Start); 
 

C# Code 
 
1 
2 
3 

4 

ReplayHandle handle = ReplayManager.BeginPlayback(); 

 

// Seek to the middle of the recording 

ReplayManager.SetPlaybackTimeNormalized(handle, 0.5f, 

PlaybackOrigin.Start); 
 

C# Code 
 
1 
2 
3 

4 
5 
6 



75 | P a g e  
Trivial Interactive 2020 

Replay in reverse? 
The replay manager has a method called SetPlaybackDirection which can be used to change set the 

direction that a replay will play. 

 

The method accepts a playback handle which should be a valid replay handle returned by 

BeginPlayback and a PlaybackDirection value which can either be Forward or Backward. 

 

Replay in slow motion? 
The playback speed is determined by the time scale value for the replay. By default, this time scale is 

set to a value of 1 which represents normal playback speed. A value of 0.5 would cause playback to 

run at half the speed. You can set the time scale value for a replay playback operation using the 

replay manager method called SetPlaybackTimeScale. Note that you can also enabled reverse 

playback by passing a negative value. 

 

The method accepts a playback handle which should be a valid replay handle returned by 

BeginPlayback and a float value which represents the time scale value. 

 

Quickly test my scene? 
You can use the built in ReplayControls  component in order to quickly test recording and playback 

to make sure it is working as expected. The replay controls can be added to any game object in the 

scene and when in play mode will display a UI that can be used to control the recording and playback 

of replays. All of the ReplayManager  interaction is handled by the replay controls so it is a quick and 

easy way to test out your scene. Replay controls can be easily added to the scene by going to ‘Tools -

> Ultimate Replay 2.0 -> Replay Controls’. 

 

Create a killcam? 
A killcam is can be implemented quite easily using Ultimate Replay 2.0, especially with the Rolling 

memory target storage capabilities. We have created a dedicated section of the user guide which 

covers the various techniques used by killcam replay systems and how they can be implemented. We 

have also included a simple demo scene which shows how a basic killcam can be implemented. You 

can find the demo scene at ‘Assets/Ultimate Replay 2.0/Demo/Killcam.unity’. 

ReplayHandle handle = ReplayManager.BeginPlayback(); 

 

// Change playback direction to reverse 

ReplayManager.SetPlaybackDirection(handle, 

PlaybackDirection.Backward); 
 

C# Code 
 
1 
2 
3 
4 

5 
6 

ReplayHandle handle = ReplayManager.BeginPlayback(); 

 

// Change playback speed to 1/2 

ReplayManager.SetPlaybackTimeScale(handle, 0.5f); 
 

C# Code 
 
1 

2 
3 
4 

5 



76 | P a g e  
Trivial Interactive 2020 

 

Create a ghost vehicle? 
A ghost vehicle is a common use case for Ultimate Replay 2.0 and we have created a dedicated 

section of the user guide to cover the necessary techniques to create a successful ghost vehicle 

replay system. We have also included a simple ghost vehicle demo scene with the asset which can be 

found at ‘Assets/Ultimate Replay 2.0/Demo/GhostVehicle.unity’. 

 

 

Having difficulty finding information about a particular aspect of Ultimate Replay 2.0? Contact us via 

the forum or by email and we can add your question to this section to help other users.  Contact 

details are also included at the end of this document. 

 

  



77 | P a g e  
Trivial Interactive 2020 

Report a Bug 
At Trivial Interactive we test our assets thoroughly to ensure that they are fit for purpose and ready 

for use in games but it is often inevitable that a bug may sneak into a release  version and only 

expose its self under a strict set of conditions.  

If you feel you have exposed a bug within the asset and want to get it fixed then please let us know 

and we will do our best to resolve it. We would ask that you describe the scenario in which the bug 

occurs along with instructions on how to reproduce the bug so that we have the best possible 

chance of resolving the issue and releasing a patch update. 

 

http://trivialinteractive.co.uk/bug-report/ 

 

Request a feature 
Ultimate Replay was designed as a complete replay system, however if you feel that it should 

contain a feature that is not currently incorporated then you can request to have it added into the 

next release. If there is enough demand for a specific feature then we will do our best to add it into a 

future version. Please note, requested features should fall within the scope of the asset and 

unrelated or overreaching features will not be added.  

 

http://trivialinteractive.co.uk/feature-request/ 

 

Contact Us 
Feel free to contact us if you are having trouble with the asset and need assistance. Contact can 

either be made by the contact options on the asset store or via the link below. 

Please attempt to describe the problem as best you can so we can fully understand the issue you are 

facing and help you come to a resolution. Help us to help you :-)  

 

http://trivialinteractive.co.uk/contact-us/ 

 

http://trivialinteractive.co.uk/bug-report/
http://trivialinteractive.co.uk/feature-request/
http://trivialinteractive.co.uk/contact-us/

